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Par t III 
T H E N A T U RE A N D USES O F PRO BA BI L I T Y 



Kinds of Probability 

7.1 Probabilit ies of Propositions 

Given any proposit ion p, then we can speak of the probability of p. 
For example: the probability that the next card from this pack will 

be an ace, that this radium atom will decay before the year 3612, that 
Joh n n y will go to the party, that it will rain t om orrow,... 

I shall write Pr(p) for the probability of p. 

7.2 Kolmogorov's Ax ioms 

In a moment I shall consider what it might mean to say that a certain 
proposit ion has a certain probability. 

But before that we can note some basic arithmetical constraints. If a 
way of attaching numbers Pr(p) to propositions p is to count as an ascrip-
tion of probabilities, it must at least observe the following requirements. 

(1 ) Fo r any p, 0 <  Pr (p ) <  1 

(2 ) If  p is cer t ain , Pr (p ) =  I 

(3 ) If  p and q ar e incom pat ib le, P(p o r q ) =  Pr (p ) +  Pr (q ) 
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These are kn own as Kolm ogorov's axiom s, and were origin ally laid 
out by the great Russian m athem at ician An d rey Kolm ogorov 
(1903-1987). 

The axiom s are simple enough. To illustrate, Pr(Johnny goes to the 
party) is a number between o and 1; if it is certain that Joh n n y will go 
to the party, then Pr(Johnny goes to the party) = 1; and if Johnny can't 
go both to the party and the football match, then Pr(Johnny goes to 
the party or the football march) = Pr(Johnny goes to the party) + 
Pr(Johnny goes to the football match). 

7.3 Som e Consequences 

One immediate consequence of Kolmogorov's axiom s is: 

(4 ) Pr (no t - p ) =  I -  Pr (p ) 

To see wh y (4) follows from the axioms, note that p and not-p are 
incompatible, so by (3) 

P(p o r not - p) =  Pr (p ) +  Pr (no t - p ). 

But (p or not-p) is certain , so by (2) 

Pr (p o r not - p ) =  I. 

The result follows by comparing the right-hand sides of these last two 
equations. 

Here is another useful consequence. In general, whether or not p 
and q are incompatible: 

(5 ) Pr (p o r q ) =  Pr (p ) +  Pr (q ) -  Pr (p and q ). 

Here 'p or q' should be understood as 'p and/ or q', not as 'p or q but not 
both '. ('Or' will be understood in this sense th roughout the book. 
Logicians call this the 'inclusive' sense, as opposed to the 'exclusive' 
sense o f'p or q but not both'.) 
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In this inclusive sense, it will be true that  Johnny goes to the party or 
wears a tie if he does either on its own and also if he does both , by going 
to the party in a tie. An d so understood Pr0ohnny goes to the party or 
wears a tie) = PrQohnny goes to the party) + Pr(Johnny wears a tie) -
Pr(Johnny goes to the party and wears a tie). 

It is possible to sh ow that (5) follows from Kolmogorov's axioms, 
but the proof is som ewhat laborious, so I shall leave it as an Exercise. 

It is m uch easier to see wh y (5) must be t rue by in spect ing a Venn 
diagram. When we look at the diagram, we see that simply adding 
Pr(p) to Pr(q) would coun t Pr(p and q) t wice—so to get Pr(p or q) we 
need to correct by subtract ing a Pr(p and q). (See Box 15.) 

7.4 Joint Probabilities 

The equivalence (5) told us that 

Pr (p o r q ) =  Pr (p ) +  Pr (q ) -  Pr (p and q). 

However, there is n o general ru le for the size of Pr(q and p), n or 
therefore for h ow m uch we need to take away from the sum of 
Pr(p) and Pr(q) to get Pr(p or q). It depen ds on h ow m uch the Venn 
d iagram s for p and q overlap with each other. In our exam ple, it 
depends on h ow likely it is that Joh n n y will bot h go to the par t y 
and wear a t ie. 

We shall consider such join t probabilit ies—Pr(p and q)—in m ore 
detail in the next two chapters, when we discuss condit ional probabil-
ities and probabilist ic independence. But we can usefully make some 
initial poin ts here. 

In some cases, Pr(p and q) will be zero, namely, when p and q are 
incompat ible—their Venn diagrams don't overlap at all—and then 
Pr(p or q) will be the simple sum of Pr(p) and Pr(q), as in Kolmogorov's 

KIND S OF PROBA BI LI T Y 91 



third axiom. This would be the case in our exam ple if there is n o way 
that Johnny would go to the party in a tie. 

But in other cases p and q need not be incompat ible, and then Pr(p and 
q) will be a posit ive number. 

In the ext reme case, p will entail q, or q entail p. (For example, 
Joh n n y's going to the par t y m ay require h im to wear a tie.) 

If p entails q, then the Venn diagram for p is inside that for q, so 

Pr (p and q ) =  Pr (p ) 

and 

Pr (p o r q ) =  Pr (q ). 
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BOX I S Venn Diagrams 

This Venn diagram' shows why Pr(p or q) = Pr(p) + Pr(q) - Pr(p and q). 

p & q 

In aVenn diagram we take the points in a plane t o represent possible worlds, 

and so can use sets of points t o represent sets of possible worlds, and in 

part icular to represent all those possible worlds where some proposit ion p 

is t rue.The areas of these spaces can then be used t o represent the prob-

abilities of the relevant propositions. (No t e here how it  is possible t o equate 

a proposit ion with the set of possible worlds where it  is t rue. This equiva-

lence is widely used in philosophy.) 

In the above diagram the proposit ion p or q corresponds t o the points 

which are either in the area labelled p, or in the area labelled q, or in both. 

And the proposit ion p and q corresponds t o the points which are in both 

the area labelled p and in the area labelled q—that is, the cross- hatched 

area. 

It  is easy t o see that, if  we t r ied t o work out the area corresponding t o 

p or q by simply adding the area for p t o that for q, we would count the 

cross- hatched area twice. So t o get the right answer we need t o correct by 

subtracting the cross- hatched area. 
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In our example, if John n y's going to the party requires h im to wear a 
tie, then the Venn diagram for Johnny's going to the party will be 
inside the one for his wearing a tie, so 

Pr (Jo h n n y goes t o t h e par t y and wear s a t ie) =  Pr (Jo h n n y goes t o t h e 

par t y) 

and therefore 

Pr (Johnny goes t o t h e par t y or wear s a t i e) =  PrQohnny wear s a t ie). 

If q entails p, then the Venn diagram for q is inside that for p, and these 
results are reversed. 

So Pr(p and q) can somet imes equal Pr(p) and somet ime equal Pr(q) 
(when p entails q or when q entails p respectively). 

But note that Pr(p and q) can never exceed either of these numbers. 
Pr( Joh n n y goes to the par t y and wears a tie) can 't be greater than 
either Pr( Johnny goes to the party) or Pr0ohnny wears a tie). 

Somet imes it is easy to forget this. (See Box 16.) But you shouldn 't . 
Two things both happening (p and q) can never be more likely than 
either one happening on its own. 

7.5 Subjective and Object ive Probabilit ies 

There are two quite d ifferen t ways of in terpret ing probabilit y state-
ments—that is, of understanding what it m eans when we attach 
numbers between o and 1 to proposit ions in such a way as to sat isfy 
Kolmogorov's axioms of probability. 

We can understand such statements either as report s about  subjec-
tive probabilit ies or as report s about  objective probabilit ies. 

Subjective probabilit ies measure the extent to which  agents expect 
outcomes. Objective probability measures the real tendencies for those 
outcomes to occur. 
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BOX 16 Linda the Feminist  Bank Teller 

Let me tell you about Linda. She is 3 I years old, single, outspoken, and very 

bright. She did an undergraduate degree in philosophy. As a student, she 

was deeply concerned with issues of discrimination and social justice, and 

also part icipated in anti- nuclear demonstrat ions. 

Now, which of these proposit ions is more probable? 

(A) Linda is a b ank t el ler 

(B) Linda is a bank t el ler and is act ive in t he f eminist movement . 

It  is very natural t o choose (B). Wh en the psychologists Daniel Kahneman 

and Am osTversky tested people on this question, they found that about 9 

out of 10 chose (B), Indeed, when they tested doctoral students in the deci-

sion science programme at Stanford Business School, a group with an inten-

sive training in probability and statistical theory, they still found that over 8 

out of 10 chose (B). 

Yet (B) cannot be the right answer Two things cannot be more likely than 

one. Af ter all, in every situation where Linda is a bank teller and a feminist, 

she will also be a bank teller; and in addit ion there will be situations where 

she is a bank tel ler without being a feminist. 

Something about the Linda story confuses our thinking, (If  you're not 

convinced that (B) is wrong, it  might be helpful t o think in terms of money. 

Suppose you are going t o win £ 100 for a correct answer Wou ld you rather 

commit yourself  t o (A) or t o (B)?) 
V y 

7.6 Subjective Probability 

Imagine that you are goin g out for a sh ort walk, and you take bot h 
your sun glasses and you r um brella. Do you believe it is goin g to 
rain? 
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Well, you aren't certain it  is going to rain —oth erwise wh y take 
your sunglasses? 

But you aren't certain that it is not going to rain either—otherwise 
wh y take your umbrella? 

In a case like this, it seems natural to say that you have a certain 
degree of belief in the proposit ion  it  will rain, and that this can be repre-
sented by some number between o and 1. (If you were certain it will 
not rain , then your degree of belief would be o, and if you were certain 
it will rain, then your degree of belief would be 1.) 

Alternat ive names for these degrees of belief are 'subjective pro-
babilit ies' or 'personal probabilit ies' or 'credences'. 

7.7 Act ion, Utility, and Subjective Probability 

We can think of degrees of belief as manifest ing themselves in choices 
of actions (as when you took both your umbrella and your sunglasses 
in the example above). In general, the greater degree of belief an agent 
attaches to some proposit ion p, the more that agent will be inclined to 
perform act ions that will bring good results if p. 

The easiest way to connect degrees of belief with choice of actions is 
to focus on  betting behaviour. Given some proposit ion p, ask yourself 
h ow much you would be prepared to pay for a bet that will pay £1 if p. 
(For example, how much are you prepared to pay to win £1 if johnny 
comes to the party?) The fraction of £1 that you are prepared to stake plaus-
ibly measures your degree of belief in p. You'll be prepared to bet sop 
if your degree of belief is 0.5, but only lop if your degree of belief is 0.1. 

Maybe you don't th ink of yourself as much of a gambler. But note 
that pret ty much any action can be construed as a gamble. When you 
cross the road, this is presumably because your degree of belief that 
you will get to the other side (a good result) is very much bigger than 
your degree of belief that you will be run over (a very bad result). 
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Many ph ilosophers and economists hold that, in general, when 
someone perform s an action, this is because the expected utility of that 
action is greater than that of the alternative actions available. The idea 
here is that the agent is concerned about certain outcomes (getting to 
the other side, being run over) wh ose importance can be measured by 
some posit ive or negat ive number—its 'utility'. An d the expected utility 
of an action is then the sum of those utilit ies each multiplied by the 
agent 's degree of belief that the action will lead to that outcome. 

Thus suppose the ut ility of getting to the other side is plus 10, and 
your degree of belief that crossing the road will lead to this is 0.9999; 
and the ut ility of being run over is minus 10,000, and your degree of 
belief for this is 0 .0001. Then the expected utility of crossing the road 
will be: 

(10 x  0 .9999) +  (- 1 0 ,0 0 0 x  0 .0001) =  9.999 -  I =  8.999 

and this may well be higher than the expected ut ility of the alternative 
actions curren t ly open to you. 

Of course all this is at best a kind of idealizat ion . In truth, there isn't 
really a precise answer to the question of exact ly h ow much I believe 
p, for every proposit ion p. There are plenty of proposit ions that I have 
never thought of, and even among those I have thought of are m any to 
which I have a pret ty fu zzy attitude. Nor is it very realistic to suppose 
that I can attach numbers to all the things I care about . Still, perhaps 
we can go along with the idealization in order to sim plify the argu-
ments that follow. (Compare the way in which engineers sim plify their 
calculat ions by assuming that everyday objects like a block of con-
crete have precise masses, even though in truth it will always be a bit 
vague whether som e of the molecules on the surface are attached to 
the block or not.) 

So I shall assum e henceforth that for any person X, at any t ime t, 
and any proposit ion p, there will be a number between o and 1 that 
represents X's degrees of belief at t ime t in proposit ion p. 
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7.8 Dutch Books 

I said that degrees of belief or subjective probabilit ies offer one way of 
interpreting probability statements—that is, one way of attaching 
numbers between o and 1 to proposit ions in such a way as to sat isfy 
the axioms of probability. 

However, as yet I haven't really shown this, for I haven 't yet shown 
that degrees of belief do sat isfy the axiom s of probability. 

An d in fact there is n o guarantee that they will. Nothing in psych-
ology rules out the possibility that an agent at a t ime might attach a 
degree of belief 0.6 to the proposit ion  it  will rain and simultaneously a 
degree of belief 0.6 to the proposit ion  it  won't rain, thus violat ing the 
immediate implicat ion of the probability axiom s that Pr(p) = 1 -
Pr(not-p). (Maybe the agent wasn 't thinking very hard, and som ehow 
managed to take a posit ive view of both these proposit ions at the 
same time.) 

However, there is an argument that any rational degrees of belief 
must con form to the axiom s of probability, even if actual degrees of 
belief don't always do so. 

The argument is that an ybody wh ose degrees of belief violate the 
axiom s of probability can have a 'Dutch Book' made against them. 
A Dutch Book is a set of bets which  are guaranteed to win whatever happens. 

By way of illustrat ion, consider the person wh o believes it  will rain to 
degree 0.6 and also believes it won't  rain to degree 0.6. Well, this person 
will happily pay 6op to win £1 on its rain ing, and also happily pay 6op 
to win £1 on its not raining. But anybody wh o m akes this pair of bets 
will certain ly lose whatever happens, because they will have paid out 
£1.20 in total and will on ly win £1 whether it rains or not . 

It is not hard to prove that a Dutch Book can be made against you if 
and only if your degrees of belief fail to sat isfy the axioms of probability. 

(The subject in the above illustration got in to t rouble because of 
degrees of belief in p and not-p which added to m ore than 1. This might 
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make it seem safe to have degrees of belief that add to less than 1. How-
ever, in that case you could be induced to bet  against both p and not-p 
in a way that is guaranteed to lose.) 

Since it seems clearly irrat ional to adopt attitudes that can make it 
certain that you will incur a loss, it follows that any rational agent will 
have degrees of belief that do con form to the probability calculus. 
(Such agents are called 'coherent '; those wh ose degrees of belief vio-
late the axiom s are 'incoherent '.) (See Box 17.) 

Note that there is nothing in this 'Dutch Book Argum en t ' to specify 
what degrees of belief you should have, beyond requiring that they 
must con form to the probability axioms. You can be coherent by hav-
ing a subject ive probability of 0.6 for it  will rain and of 0.4 for it  won't 
rain. But you could equally achieve coherence by attaching 0.8 and 0.2 
to these two proposit ions, or 0.15 and 0.85, or any other combinat ion 
of numbers that add up to 1. 

The 'Dutch Book Argum en t ' requires coherence, but beyond that 
leaves it to subject ive opin ion which part icular degrees of belief you 
should adopt. 

7.9 Object ive Probability 

Objective probabilit ies are quite differen t from subject ive ones. They 
are out in the world, not in people's heads. They quan t ify the object ive 
tendencies for certain kinds of results to happen. These tendencies 
would still have existed even if agents with subject ive probabilit ies 
had never evolved. 

The clearest examples of objective probabilit ies come from the 
quantum mechanics of subatomic processes. Certain events at this 
level are absolutely unpredictable. Take any radium atom. It m aydecay 
in a given t ime in terval or it may not. There is n o difference between 
those atoms that decay and those that don't . All that can be said is that 
each such atom has a certain object ive probability of decaying in a 
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given interval. (If the in terval is 1602 years—the 'half-life' of a radium 
atom—then there is 0.5 probability of decay in that time.) 

It is helpful to think of objective probabilit ies in terms of frequencies. 
If the probability of a single radium atom decaying with in its half-life 
is 0.5, then about 50% of any sequence of radium atoms will decay in 
that t ime. 

(But don't be too quick to equate object ive probabilit ies with fre-
quencies. There are m an y philosophical pit falls in the way of any such 
equat ion, most centrally the fact that the observed frequency in any 
sequence of events won 't generally correspond  exactly to the underly-
ing probability. Note h ow I was careful to say above that  'about 50% of 
any sequence of radium atoms will decay in that t ime'—not that 
exact ly 50% will.) 

There are plen ty of object ive probabilit ies outside the subatomic 
world (though perhaps they all depend in some way on quantum 
probabilit ies). For example, the probability that any human em bryo 
will be male is slightly over 0.5. The probability that males in the 
United States will develop pancreat ic cancer in their lifet ime is 0.0138. 
The probability that an ace will be dealt first from a well-shuffled pack 
is 1/ 13. And so on. 

The ult imate nature of object ive probability is a matter of ph ilo-
sophical controversy. But we need not enter into this here. The basic 
poin t is that objective probabilit ies are genuine features of the exter-
nal world, distinct from subject ive degrees of belief. 

100 THE N A T URE A N D USES OF PROBA BI LI T Y 

BOX 17 Bookmakers and Dutch Books 

A good bookmaker aims t o make a Dutch Book against the punters. The 

bookie wants t o induce the punters t o make a set of bets that will turn a 

profit  for the bookie whichever horse wins. 

For instance, In a two- horse race between Aramis and Balthazan the 

bookie will be guaranteed a profit  whichever horse wins if  £ 100 has been 

staked on Aramis at evens, and £ 120 on Balthazar at  2- 1 on. ('Evens' means 

that you stake £ I t o win £ I, and '2- 1 on' means you stake £2 t o win £ I.) 

These bets mean that t he bookie will make £20 if  Aramis wins (the £120 

stake on Balthzar less the £ 100 payout on Aramis) and £40 If  Balthazar wins 

(the £ 100 stake on Aramis less the £60 paid out on Balthazar). 

This doesn't  necessarily mean that any Individual punter is Irrational. The 

bookie can pull this t rick because different punters will sometimes attach 

different subjective probabilit ies t o the same outcome. In this sense the 

punters taken collect ively will violate the ax ioms of probability, But this 

doesn't  mean that any Individual punter has 'incoherent ' degrees of belief. 

But you will be irrational if  the bookie can make a Dutch Book against 

you all on your own. If  you yourself put £ 100 on Aramis at evens, and also put 

£ 120 on Balthasar at  2- 1 on, then this indicates that you personally have a 

degree of belief in Aramis winning of at  least 1/2 and in Aramis not  winning 

of at  least 2/ 3. No w the bookie is not only sure t o win, but you individually 

are sure t o lose. 
v 
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h u m a n s are ve r y p r o n e t o m ist akes in p robab ilist ic r eason in g. 

E X E R C I S E S 

1. If I d r a w o n e ca r d f r o m a we l l - sh u ffle d p a ck , w h a t is t h e p r o b a b i l i t y o f: 

(a) a h e a r t 
(b) a k in g 

(c) an h o n o u r (A, K, Q , J, 10) 
(d) n o t a h e a r t 
(e) an h o n o u r a n d a h e a r t 

(f) a h e a r t o r a sp ad e 
(g) a h e a r t a n d a sp a d e ? 

2. If I t o ss a fa ir co in fo u r t im e s , wh a t is t h e p r o b a b i l i t y t h a t I get : 

(a) fo u r h e a d s ; (b) z e r o h e a d s ; (c) o n e h ea d ; (d) t h r ee h e a d s? 

H in t : t h e r e a r e 16 e q u ip r o b a b le o u t c o m e s fo r t h e fo u r - t o s s se q u e n ce . 

3- If I ro ll t w o fa ir d ice , w h a t is t h e p r o b a b i l i t y t h at t h e y s u m to: 

(a) 4; (b) 7; (c) 12; (d) an o d d n u m b e r ; (e) less t h a n 5; (f) e it h er less t h a n 5 
o r 9; (g) e it h e r less t h a n 5 o r an even n u m b e r ? 

H in t : t h e r e a r e 36 e q u ip r o b a b le w a ys t h e d ice can lan d . 
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4. If P r 0 o h n n y at p a r t y) = 0 .4 a n d P r 0 e n n y at p a r t y) = 0 .8 a n d P r ( Jo h n n y 

a n d Je n n y at p a r t y) = 0 .3, wh a t is t h e p r o b a b i l i t y t h a t 

(a) Je n n y w o n ' t b e t h e r e 

(b) at least o n e o f t h e m wil l b e t h er e 
(c) Je n n y will b e t h e r e b u t n o t Jo h n n y? 

5. Su p p o s e t h a t yo u c a n e it h er g o t o t h e b e a c h o r t o wa t c h t h e t est m a t ch . 
Th e b e a ch h a s an in t r in s ic u t ilit y o f p lu s 10 , a n d t h e cr icke t o f p lu s 15. 
Bu t t h e r e is a 0 .5 ch a n ce t h a t yo u wil l ge t su n b u r n t (u t ilit y o f m in u s 10 ) 
at t h e b e a ch , w h e r e t h e r e is o n ly a 0.3 ch a n ce o f ge t t in g su n b u r n t at t h e 
cr icke t . Also , t h e r e is a 0 .2 ch a n ce yo u wi l l see Jill (p lu s 20) at t h e b e a ch , 
b u t o n ly a 0 .0 5 c h a n ce yo u wil l see h e r at t h e cr icke t . W h i c h o p t io n h a s 
t h e gr ea t e r e xp e c t e d u t ilit y? 

6*. Sh o w a lge b r a ica l ly h o w t h e e q u a t io n 

Pr (p o r q ) =  Pr (p ) +  Pr (q ) -  Pr (p and q ) 

fo l lo ws f r o m Ko lm o g o r o v ' s a xi o m s . (H in t : n o t e t h a t 

(p o r q ) is logically equivalent t o ((p & not - q) o r (q )) 

an d t h a t 

p is logically equ ivalen t ((p & q ) o r (p & not - q )) 

a n d t h a t t h e p a ir s o f p r o p o s i t io n s wi t h in t h e b r a ck e t s o n t h e r igh t -h a n d 

sid es a r e in co m p a t ib le . ) 
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8 
® • • 

Constraints on Credence 

8.1 The Principal Principle 

The last chapter ended with the contrast between subjective and 
object ive probabilit ies. Som e readers might have wondered h ow they 
are related. 

Not every proposit ion to which agents attach subject ive degrees of 
belief will also have an object ive probability. You might well have a 
certain expectat ion of Joh n n y going to the party, say, or of Aram is 
winning the 3.30 at Kempton Park, even if there is no good sense in 
which these proposit ions have any object ive probability. 

But in other cases agents do attach subject ive degrees of belief to 
proposit ions that also have an object ive probabilit y—for example, 
that a given atom will decay in some interval, or that a given em bryo 
will be male, or that the next card drawn from a well-shuffled pack 
will be an ace. 

Now, there is no guaran tee in such cases that the agent 's subject ive 
probability will correspond to the object ive probability. You might 
expect an ace to degree 1/ 2, even though its object ive probability is 
on ly 1/ 4. 
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But even so there is something obvious to say about the relation 
between subject ive and object ive probability in such cases—namely 

The Principal Principle: 
A n agent 's sub ject i ve p robab i l i t ies ought  t o m at ch t h e ob j ect i ve probabi l i -

t ies, even if  in f act t h ey don 't . 

The term 'Principal Principle' was originally coined by David Lewis 
(the same ph ilosopher wh o was a realist about possible worlds) for h is 
version of the idea that subjective probabilit ies ought to match objec-
tive probabilit ies. He adopted this name because he thought that this 
idea is fundam en tal to our understanding of both object ive and 
subject ive probability. 

In fact m y Principal Principle above is on ly a rough approximat ion 
to Lewis' more carefu lly formulated principle. But it will do for present 
purposes. 

Rem em ber that the 'Dutch Book Argum en t ' allowed rat ional 
agents a great deal of freedom about the choice of subject ive prob-
abilit ies—the on ly constrain t was that subject ive probabilit ies should 
con form to the axiom s of probability. The Principal Principle im poses 
a further const rain t on rat ional agen ts—when object ive probabil-
ities exist , you should do what you can to m ake your subject ive prob-
abilit ies match them . 

The Principal Principle is obviously sensible. If you are to make the 
right choices, your subjective expectat ions had better not diverge from 
the objective probabilit ies. You will make bad bets if you have a high 
degree of belief that an ace will be dealt, when in fact the objective 
probability is on ly 1/ 4. 

Curiously, even though con form ity to the Principal Principle is 
obviously a good idea, the status of this principle is a matter of 
controversy. Som e philosophers think it can be just ified by appeal to 
more basic facts. But others doubt that any such just ificat ion is possi-
ble, and view it as itself a fundamental principle of rationality. 
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8.2 Conditional Probability 

The conditional probability of p given q, Pr(p/q), is the probability to 
ascribe to p on the assumpt ion that q. 

It is measured by: 

( I ) Pr (p / q ) =  Pr (p & q )/ Pr (q ). 

(In Venn diagram terms, think: the area of q that is also p—that is, the 
cross-hatched area as a proport ion of the area for q.) 
So, for example, we might have the condit ional probability that a 
th row of a fair die will show an even number, given that it shows a 
higher num ber than three. We can write this Pr(even/ over three), and 
measure it by: 

Pr (even and o ver t h r ee)/  Pr (o ver t h r ee). 

This fract ion represen ts the probabilit y of an even result am on g 
the results that are h igher than th ree—an d is equal to 2/3, since 
the probabilit y of a result (four or six) that is even  and over three is 
2/ 6, wh ile the probabilit y of any result over th ree (four, five, or six) 
is 1/ 2. 

p & q 
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8.3 Updating Degrees of 
Belief—Conditionalization 

Now that we have in troduced condit ional probabilit ies, we can explain 
a further constrain t govern ing rat ional degrees of belief. So far we 
have seen h ow the 'Dutch Book Argum en t ' implies that rat ional 
degrees of belief must be coherent (that is, sat isfy the axioms of prob-
ability), and h ow the Principal Principle implies that they must  match 
objective probabilities when these are available. The further constraint is 
that rat ional agents should  'conditionalize' whenever they gain n ew 
in format ion . 

Suppose that you have rational degrees of belief as follows: 

Pr Qohnny goes t o t h e p ar t y) =  1/ 2 

Pr f j oh n n y goes t o t h e par t y/ Jane g oes t o t h e p ar t y) =  2/ 3. 

Now you learn for sure that Jane is going to the party. What should 
your degree of belief in Johnny's going n ow be? 

The answer is obvious enough—2/ 3. If it was right to th ink before-
hand that the condit ional probability of Johnny going/on the assumption 
Jane goes is 2/3, and if n ow it turns out that Jane is going, then it must be 
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right to th ink that the uncondit ional probability of Joh n n y has 
increased to 2/3. 

Think of it in Venn diagram terms. You n ow know you are inside the 
area of the Venn diagram for Jane's going, so to speak. And you have 
already decided that the proport ion of this area that covers Johnny 
going is 2/3. So it must n ow be rational foryou to have an unconditional 
degree of belief in Johnny going of 2/3. 

Changing your degrees of belief in this way is called  'conditionalization'. 
Let us thus formulate 

The Principle of Condit ionalizat ion: 
If  yo u r old cond i t ional d eg r ee o f bel ief Prold(p / q) equals k, and you co m e t o 

k n o w q, you should set yo u r new d eg r ee o f bel ief in p, Pr n ew(p ), equal t o k. 

Note that q here needs to be understood as represent ing everything you 
com e to know. The principle doesn 't work if q is on ly part of your new 
knowledge. 

Thus suppose that in the above example you learn not only that 
Jane is going to the party but also that she will be accompanied by Jill. 
And suppose that you had always thought that there was almost n o 
chance that Joh n n y would go if both Jane and Jill did. (You had a very 
low original condit ional probability Prold(Johnny goes/ Jane and Jill go) 
even though your original Prold0ohnny goes/ Jane goes) was 2/3.) 

While it is still true that you have learned that  Jane will go, it is n o 
longer a good idea to attach a 2/3 probability to Joh n n y going, just on 
the grounds that your Prdd(Johnny goes/ Jane goes) = 2/3. An d this is 
precisely because you have learned  more than that Jane will go to the 
party. You n ow kn ow not just that you are inside Jane's Venn diagram, 
so to speak, but more specifically that you are inside that bit of it where 
Jill also goes to the party. An d the proport ion of that area where Johnny 
goes too is very small. 

It is generally agreed  that the Principle of Condit ionalizat ion is valid. 
But, just as with the Principal Principle, there is n o agreement about 
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why it is valid. As before, some philosophers think it is a basic principle 
of rationality, while others think that it can be just ified by further 
considerat ions. 

Note in this connect ion that the Principle of Condit ionalizat ion is 
not simply a consequence of the Dutch Book Argum en t for coherence. 
That earlier argument showed that the axiom s of probability must be 
respected by all the degrees of belief you adopt  at any given time. But the 
Principle of Condit ionalizat ion concerns the way you should  change 
your degrees of belief over time in response to evidence, substituting 
your old degrees of belief Prold(—) by new ones Prnew(—). 

You will sat isfy the Dutch Book Argum en t as long as your old 
Prold(— )s and your n ew Prnew(— )s are each separately coherent. The 
Principle of Condit ionalizat ion places a further constraint on the h ow 
these two sets of degrees of belief are related. 

8.4 Bayes' Theorem 

There is a simple probability equation that casts some useful light on 
the workings of condit ionalizat ion : 

(2 ) Pr (h / e ) = Pr (h ) x  Pr (e/ h )/ Pr (e). 

This equation, wh ich you can check follows very quickly from the 
equation (1) for condit ional probability, is known as Bales' Theorem, 
after the eighteenth-century English clergym an wh o first proved it. 

To see the sign ificance of this equation, consider some case where 
you gain some evidence e and are concerned with its bearing on som e 
hypothesis h. According to the Principle of Condit ionalizat ion, you 
should adopt a n ew Prnew(h) that is equal to your old condit ional 
Pro|d(h/e). But Bayes' Theorem tells us that Prold(h/e) is equal to Prold(h) x 
Prold(e/h)/Prold(e). So we can see that the two together imply that 

(3 ) Pr n ew(h ) =  Pr o l d (h ) x  Pr o l d (e/ h )/ Pr o l d (e). 
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We can view this as a recipe for transforming your old degree of belief in 
h to a new one when your learn e—multiply your ProU (h) by the factor on 
the right-hand side. This tells you that you should increase your degree of 
beliefin h to just the extent that Prold(e/h) exceeded Prold(e)—that is, to just 
the extent that e was to be expected given h but not to be expected 
otherwise. 

So viewed, (3) seems eminently sensible. The hypothesis h is confirmed 
if it successfully predicts something that would otherwise be unexpected. 

In addition to thus explaining why a hypothesis gains more credibility 
from the verification of surprisingrather than unsurprising consequences, 
Bayes' Theorem also illuminates a wide range of other quirks and puzzles 
about the way evidence confirms hypotheses. 

For example, (3) explains why it is a mistake to ignore the prior prob-
ability of h in assessing how probable it is shown to be by e. (This surpris-
ingly common mistake is known as the 'base rate fallacy'. See Box 18.) 

Because of the significance of Bayes' theorem, the term  'Bayesian' is 
often found in discussions of probability. However, this term has no 
very definite meaning. It is probably most often used to refer to any 
view that takes subjective degrees of belief seriously and holds that 
they are subject to some rational principles. But somet imes it is used 
more precisely, to refer specifically to the idea that degrees of belief 
should be updated according to the Principle of Condit ionalizat ion. 

8.5 Conditional Probabilit ies 
and Conditional Statements 

A conditional probability Pr(q/p) is the probability of q on the assumption 
that p. 

Some readers might have wondered h ow such condit ional probabil-
ities relate to conditional statements of the form  ifp, then q. (For example: if 
jane goes to the party, then Johnny will go too.) 
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Aft er all, doesn 't a condit ional statement amount to something like 
stating q on the assumption that p? And given this, shouldn 't we expect 
the probability of the condit ional statement Pr(if p, then q) to be equal 
to the condit ional probability Pr(q/p)? 

As it happens, this is a horribly complicated topic. 
An initial d ifficulty is that there are differen t kinds of condit ional 

statement. In a m om en t I shall dist inguish between  material, indicative, 
and  subjunctive condit ionals. An d even aft er we have dist inguished 
them, it is not obvious h ow to understand them. While material con -
ditionals are clear enough , the analysis of indicative and subjunct ive 
condit ionals is hugely controversial. 

It would take us too far afield to analyse these const ruct ions 
properly here. My aim in the brief remainder of this chapter will sim-
ply be to show you wh y we need to recognize different kinds of 
condit ionals. 

What about the quest ion with wh ich I started this sect ion —is the 
probabilit y of a condit ional statement Pr(if p, then q) equal to the 
condit ional p robabilit y Pr(q/p)? Here I can do n o m ore than sim ply 
tell you that th is sim ple equat ion doesn 't work for any kind of 
condit ional ' i f. . . , then ' st at em en t—wh ich is not to deny that there 
are im port an t con n ect ion s between condit ional statements and 
condit ional probabilit ies. 

8.6 Material Conditionals 

If you have done an elementary logic course, you will have been in t ro-
duced to a construct ion , normally writ ten 'p->q', which is defined as 
being true as long as it is not the case that p is true and q is false. 

This is the 'material condit ional'. 
Given its defin it ion , it is easy to see that 'p -»q ' is equivalent to 'not-

(p and not-q)' or again to 'either not-p or q\  
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It is normal in elementary logic courses to read 'p—>q' as 'if p, then q'. 
An d indeed the material condit ional does have strong similarit ies 

with everyday claims of the form 'if p, then q'. In part icular, it shares 
the feature that, when you add knowledge of p to them, then you can 
in fer q. Just as p together with 'if p, then q' implies q, so does p together 
with 'p—>q'. (This is an immediate consequence of the definit ion of 
'p—>q' given above—you can check it as an exercise.) 

Given the similarit ies, there is no great harm in reading 'p -»q ' as 
equivalent to everyday claims of the form 'if p, then q' when exploring 
elementary logic. But there are strong reasons to doubt that the two 
const ruct ions are really the same. 

Note that 'p—>q' is guaranteed to be true whenever p is false, whatever 
q says, and also to be true whenever q is true, whatever p says. (Remember, 
'p -»q ' is true as long as it is not both the case that p is true and q is false.) 

So 'David Papineau goes to Ant igua in Novem ber the gold price 
rises in December' is guaranteed to be true, as long as I do not go to 
Ant igua in November. 

Similarly 'Cesc Fabregas plays for Arsenal —> Hugh Grant lives in 
London ' is guaranteed to be true, simply in virtue of Hugh Grant living 
in London. 

Now, as we shall see in a moment , the everyday construct ion 'if..., 
t h en ...' can be used to make two different kinds of claim—'indicat ive' 
and 'subjunct ive' condit ional claims. But we can already see reasons 
wh y the material condit ional 'p -»q ' must d iffer from both of these. 
In ordinary English, any claim of the form 'if p, then q' requires some 
connection between p and q, not just the falsity of the antecedent p or 
the truth of the consequent q. 

So, on any reading of the English const ruct ion 'if..., t h en ...', m y 
not going to Ant igua in November isn't enough to ensure the truth of 
'if David Papineau goes to Ant igua in November, then the gold price 
will rise in Decem ber '—for there may be no connect ion between m y 
November locat ion and the December gold price. 
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BOX 18 The Base Rate Fallacy 

You are worr ied about a kind of cancer (h) which is present in I % of people 

like you. There is a simple test which invariably detects the cancer though it  

does give a false posit ive result  in 10% of people without  it. You take the 

test, and get a posit ive result  (e). Wh at now is the probability you have the 

cancer? 

Wel l , you might think that, since the test is only 10% unreliable, the 

answer must be 90%. But that would be quite wrong. There is still little 

more than a 9 % probability of cancer 

To see why, recall that, once you discover e, you should set your new 

Prnew(h) equal t o your old Pro|d(h/ e). And Bayes' Theorem tells you t o com-

pute this by multiplying your old Prold(h) by Pro|d(e/ h)/ Prold(e). 

Two of these terms are easy. Prold(h) was given as \ %, and Prdd(e/ h) is I, 

since the test invariably detects the cancer Prold(e) is a bit  messier: what is 

the probability of a posit ive result  for a person taken at random? Wel l , the 

1% of cancer sufferers will definitely give posit ive results, and the 99% of 

non- sufferers will give 10% false posit ives—which sums to 10.9%. So 

Prdd(h) x  Prold(e/ h)/ Prold(e) =  0.01 x  1/ 0.109 =  0.0917. So you should set 

your Pr (h) t o just over 9%. 

Think of it  like this. If  1,000 people take t he test, 10 will give a positive 

result  because they have the cancer—but 99 healthy people will give false 

positives. So a bad result  still leaves you with only a 10/ 109 =  0.0917 prob-

ability of cancer 

The tendency t o overest imate the significance of such tests is called the 

'base rate fallacy', because it  is due t o ignoring the low 'base rate' or initial 

probability of having t he cancer It  is disturbingly common in everyday life. 
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An d similarly Hugh Gran t 's living in London isn 't enough to ensure 
the truth of'i/ Cesc Fabregas plays for Arsen al, then Hugh Gran t lives in 
Lon don '—for Cesc Fabregas' em ploym en t m ay have noth ing to do 
with Hugh Gran t 's residence. 

Given these d ifferences, it seems clear that the material condit ional 
works differen t ly from any version of the everyday const ruct ion 'if 
p, then q'. (Indeed, we migh t feel that 'material conditional' is someth ing 
of a m isnom er, given its marked d ifference fr om any everyday 'if 
p, then q'.)1 

8.7 Indicative and Subjunctive Conditionals 

Consider this pair of claims. 

(4 ) 'If  Osw al d d idn't  kill Kennedy, t h en so m eo n e else did.' 

This claim is obviously t rue. There is n o doubt that President Kennedy 
was killed by som ebody. If Lee Harvey Oswald wasn 't in fact the guilty 
party, then som e else m ust have done it. 

(5 ) 'If  Osw al d hadn't  k i l led Kennedy, t h en so m eo n e else wo u l d have.' 

This claim is very doubt fu l. The Warren Com m ission invest igated the 
mat ter very th orough ly and concluded that O swald was workin g 
alone. In their view, if Oswald 's plans had som eh ow been frust rated , 
then Kennedy would not have been killed—that is, they concluded 
that (5) is false. 

Since (4) is clearly t rue and (5) very likely false, they must m ean 
differen t th ings. 

1 1  sh ou ld n ot e that there are a few ph ilosoph ers wh o m ain t ain that the in d icat ive 
ver sion of t h e eve r yd ay 'if p , t h en q' is at b o t t o m n o d iffe r en t fr o m the m at e-
rial con d it ion al, an d that t h e ap p aren t d iscrep an cies can b e exp lain ed away. 
But t h is is ve r y m u ch a m in o r i t y p osit ion . 
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But note that  both claims are of the form 'if p, then q' and both have 
the same an tecedent p—O swald not killing Ken n edy—an d the same 
consequen t q—som eon e else killing Kennedy. 

The on ly d ifferen ce between the t wo claim s is that (4) is in the 
indicative m ood ( '... didn 't kill . . . did.') wh ile (5) is in the subjunctive 
m ood ('... hadn 't k illed ... would have'). 

Accordingly, claim s like (4) are called indicat ive condit ionals and 
claims like (5) subjunct ive condit ionals. 

(Somet imes subjunct ive condit ionals are called 'coun terfactual' on 
the grounds that they im ply the falsity of their antecedents. But this 
t erm in ology can be misleading, given that plen ty of indicat ive condi-
t ionals also have an tecedents that are pret ty sure to be false—(4) wou ld 
be a case in poin t .) 

8.8 Rational and Metaphysical Changes 

Let m e say a bit m ore about the d ifferen ce bet ween indicat ive and 
subjunct ive con dit ion als. (I can on ly scratch the su rface here. The 
an alysis of these con st ruct ion s is hugely con t roversial, with a litera-
ture st retch ing to t h ousan ds and t h ousan ds of art icles. There are 
ph ilosophers wh o spend their wh ole lives workin g on condit ionals— 
indeed there are ph ilosoph ers wh o work on ly on indicat ive con di-
t ionals, and others wh o work on ly on subjun ct ive condit ionals.) 

Indicative condit ionals are to do with rat ional changes of belief. 
They tell us what we should believe on learn ing the antecedent p. 

Subjunct ive condit ionals are to do with metaphysical alternat ives. 
They tell us what d ifference p would have made to the course of 
h istory. 

To illustrate h ow indicat ive condit ionals work, suppose that som e-
one wh om you t rust wh ispers in your ear that Lee Harvey Oswald 
defin itely didn't kill President Kennedy. What should you n ow think? 
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Well, you kn ow full well that Kennedy was assassinated, and your new 
in format ion doesn 't contradict this. So the obvious conclusion is that 
there was a different assassin . Thus: 'If Oswald didn't kill Kennedy, 
then som eone else did.' 

Now take the corresponding subjunctive condit ional. The question 
n ow is the difference it would have made to h istory had Oswald not 
killed Kennedy, not h ow such in format ion should impact on your 
beliefs. An d to this quest ion the obvious answer (assuming the War-
ren Commission was right) is that Kennedy would not have been 
assassinated. Thus: 'If Oswald hadn't killed Kennedy, then no one else 
would have.' 

When we evaluate indicative condit ionals, we add p to all our cur-
rent beliefs, make the m in im um adjustments needed to accommodate 
it, and consider whether q still follows. 

But when we evaluate subjunctive condit ionals, we proceed differ-
ently. We first remove from our current beliefs all those whose truth is 
a causal consequence of not -p—and on ly then do we add p with min i-
mal adjustments and consider whether q follows. Since we are con -
cerned with the impact p would have on the course of history, we 
don't want to reason on the basis of facts that would have been caus-
ally altered if p had obtained. 

That's wh y we don't hold onto Kennedy's assassinat ion when we 
make the subjunctive assumption 'if Oswald hadn't killed Ken n edy...' . 
Removing Oswald's killing Kennedy removes the cause of Kennedy's 
assassination. 

By contrast , we do hold onto Kennedy's assassinat ion when we 
make the indicative assumption 'if Oswald didn't kill Kennedy...'. Since 
we are sure that Kennedy actually was killed, we hang onto this infor-
mation in evaluating the indicative condit ional. 
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F U R T H E R R E A D I N G 

Colin Howson and Peter Urbach 's Scientific Reasoning: The Bayesian Approach 
(Open Court second edit ion 1993) sh ows h ow 'Bayesian ism ' illuminates m an y 
aspects of scien t ific reason ing. 

Paul Horwich 's Probability and Evidence (Cambridge Un iversity Press 1982) covers 
m uch of the sam e groun d . 

There is a usefu l Stan ford Encyclopedia en t ry on Bayesian th inking by W illiam 
Talbott : <h t tp:/ / plato.stanford.edu/ en t ries/ epistemology-bayesian>. 

A Philosophical Guide to Conditionals (Oxford Un iversity Press 2003) by Jon athan 
Bennett is a masterly in t roduct ion to th is com plex topic. 

Mark Sain sbu ry's Logical Forms (Blackwell secon d edit ion 2001) con tain s 
m uch u sefu l m aterial about con dit ion als and their con n ect ion with 
probabilit ies. 

See also <http:/ / plato.stanford.edu/ entries/ conditionals> by Dorothy Edgington. 

EX ER CI S ES 

1. If Pr(wind) = 0 .6 , Pr(rain ) = 0.5, an d Pr(win d an d rain ) = 0.4, wh at is 
Pr(wind/ rain ), an d wh a t is Pr(rain / wind)? 

2. If I d r aw on e card fr o m a well-sh u ffled pack, wh at is the con d it ion al 

p robab ilit y of: 

(a) a cou r t car t (A, K, Q ,)) given a h ear t 
(b) a cou r t card given n ot a h ear t 
(c) a h ear t given a cou r t card 
(d) n ot a h ear t given a cou r t card 
(e) an even n u m b er given a n on -cou r t card 
(f) an od d n u m b er given a n on -cou r t card 
(g) an even n u m b er given a cou r t card? 

3. Suppose you have good reason to hold that Pr(h) = 0.1, Pr(e) = 0.2, and Pr(e/h) 
is 0.8. Th en you learn e. W h at probability should you n ow attach to h? 
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4. You have a 10% degree of belief that a coin is not fair but has a 75% bias in 
favour of Heads. You toss it twice and see two Heads. What now should 
be your degree of belief that it is fair? 

5. Which of these conditionals are indicative and which subjunctive? 

(a) If you have visited the moon, then you have forgotten being there. 
(b) if you had visited the moon, then you would have forgotten being there. 
(c) If the British Prime Minister in 2012 were a woman, she would be in 

disguise. 
(d) If the British Prime Minister in 2012 is a woman, she is in disguise. 
(e) If you have eaten arsenic, then you are dead now. 
(f) If you had eaten arsenic, then you would be dead now. 
(g) If the foundations of Buckingham Palace had crumbled to dust, this 

wouldn't have made it collapse. 
(h) If the foundations of Buckingham Palace have crumbled to dust, this 

hasn't made it collapse. 

6. Which of the conditionals in the last question are true, and which false? 
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Correlat ions and Causes 

9.1 Probabilistic Independence 

We say that p is probabilistically independent of q wh en Pr(p/q) = Pr(p). 
In such a case, the probability of p on the assumption that q is n o 

different from the probability of p in general. Assum ing q doesn 't 
alter the probability of p. 

To illustrate, take the proposit ions that a card drawn from a pack 
will be an  honour (10, Jack, Queen, King, or Ace) and that it will be a 
heart. The form er is probabilist ically independent of the latter. An 
hon our is no m ore nor less likely on the assumpt ion that the card is a 
heart than it is anyway. 

Let us check the arithmetic. Pr(honour/ heart) is Pr(honour and 
heart )—which is 5/ 52—divided by Pr(heart)—which is 1/ 4. So 
Pr(honour/ heart) is 5/13, which is just the same as Pr(honour) itself. As 
I said, getting a heart doesn 't make it any more or less likely that you 
will get an honour. 

Note that p is probabilist ically independent of q just in case 

( l ) Pr ( p and q ) =  Pr (p )Pr (q ). 

(To see why, rem em ber that 
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Pr (p / q ) =  Pr (p and q )/ Pr (q ). 

So, if 

Pr (p / q ) =  Pr (p ) (t hat is, p is probabi l ist ical ly i n d ep en d en t o f q ) 

then 

Pr(p and q) = Pr(p)Pr(q), 

and vice versa.) 
Probabilist ic independence thus m eans that p and q don't occur 

together any more (or less) often than you would expect given their 
separate probabilit ies of occurrence. 

We also n ow see that probabilist ic independence is symmetrical. If 
p is probabilist ically independent of q, then q is probabilist ically inde-
pendent of p. 

In our example, we have already seen that gett ing an honour is 
probabilist ically independent of getting a heart . The probability of an 
honour isn't altered by getting a heart—it 's 5/13 either way. 

So by the same coin, getting a heart must be independent of getting 
an hon our—an d if you think for a second you'll see that the probabil-
ity of a heart is indeed not altered by getting an honour—it 's 1/4 either 
way. 

Just as gett ing a heart doesn 't make it any m ore or less likely that 
you will get an honour, so gett ing an honour doesn 't make it any m ore 
or less likely that you will get a heart . 

We see that when two results are independent , neither gives any 
in format ion about the other. 

9.2 Probabilistic Dependence 

When Pr(p and q) > Pr(p)Pr(q), then we say p and q are positively prob-
abilistically dependent. 
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This is equivalent to the requirements that 

Pr (p / q ) >  Pr (p ) 

or that 

Pr (q / p ) >  Pr (q ). 

In such cases q makes p more likely than it would be otherwise, and p 
makes q more likely than it would be otherwise. 

So for example, gett ing an honour and getting a 9-or-a-io are posi-
t ively probabilist ically dependent. The probability of having both (by 
getting a to) is 1/ 13, wh ich is greater than the product of the probabil-
ities of getting an honour (5/13) and getting a 9-or-io (2/13). 

When Pr(p and q) < Pr(p)Pr(q)—equivalently Pr(p/q) < Pr(p) or Pr(q/p) 
< Pr(q)—then we say p and q are negatively probabilistically dependent. 

Getting an honour and getting an even numbered card (2,4 ,6 ,8 , or 
10) are negatively probabilist ically dependent. The probability of get-
ting both these results (you need a 10 again) is 1/ 13—which is less than 
the product of the probabilit ies of getting an honour (5/13) and getting 
an even-numbered card (1/2). 

9.3 Correlat ion 

We speak of correlat ions when we study the object ive probabilist ic 
dependencies between distinct propert ies of individuals. The individ-
uals might be people, places, countries, cars, stars, cows,... pretty 
much anything whatever. If we were studying people, our propert ies 
might be gender, alcohol consumpt ion , and heart disease, say. If we 
were studying cows, our propert ies might be diet, breed, weight , and 
fert ility. And so on. 

Suppose we represent the propert ies of interest in some such case 
as F, G, H ,... We can then use Pr(F), Pr(G), Pr(H),...to represent the 
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object ive probability that any given individual will have property F, G, 
H ,.. . respectively. 

If in such a case F and G are posit ively probabilist ically dependen t— 
Pr(F/G) > Pr(F)—then we can say that F and G are correlated. 

A correlat ion between F and G thus means that F occurs more often 
in the presence of G than otherwise (and vice versa). For example, we 
might find that in people heart disease (H) and drinking alcohol (A) 
are correlated—Pr(H/ A) > Pr(H). This tells us that the probability of 
heart disease among the alcohol drinkers is h igher than in the popula-
tion in general.1 

9.4 Causation and Correlat ion 

We're often told that correlation doesn't prove causation. And that's 
true enough—a craving for ice cream is correlated among women with 
giving birth some months later, but the craving doesn 't cause the birth. 

In this case, the correlat ion isn't due to the craving causing the birth, 
or vice versa, but to the presence of a com m on cause for both even ts— 
namely, pregnancy. The craving is thus a symptom  of the impending 
birth , but not its cause. 

Still, even if correlat ion doesn't always mean causat ion , because of 
the possibility of com m on causes, it is arguable that correlat ion 
between two propert ies does mean that  either one causes another or 
they have a com m on cause. 

To have a correlat ion without any such causal explanat ion would be 
an absurd general coincidence. Once-off coincidences are only to be 

1 Stat ist ic t ext books will n orm ally give a m ore com plicat ed defin it ion of cor-
relat ion , to deal with quan t it at ive p roper t ies like weigh t as well as on -o ff 
qualitat ive p roper t ies like gen der. But we can ign ore quan t it at ive p roper t ies 
here, since t h ey do not affect the basic ph ilosoph ical poin t s. 
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expected. Somet imes Jill and Jane will happen to find themselves wear-
ing the same colour dress just by chance. But if this turns out to be a 
regular pattern, then it calls for explanat ion. (Either Jill is copying Jane, 
or Jane is copying Jill, or they are both influenced by the same fashion 
advice.) 

If we accept that a correlat ion between two propert ies does indeed 
imply that either one is causing the other or that they have a com m on 
cause, then we can use this to help us in fer causat ion from correlat ion. 
In part icular, if we can rule out the possibility of a com m on cause, 
then we can in fer a direct causal connect ion . 

9.5 Screening Off 

Interestingly, com m on causes have a dist inctive probabilist ic profile. 
They typically 'screen off' the correlat ion between their join t effects, in 
the sense that this correlat ion disappears when we 'control for the com-
mon cause'. This allows us to iden t ify com m on causes from probabilis-
tic patterns, and thereby tell whether or not correlat ions sign ify causal 
connect ions. 

Let me explain this m ore slowly. Take the craving-birth correlat ion 
again. 'Controlling for the com m on cause' means looking separately 

p 

c B 
correlation screened off 
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at cases where wom en are pregnant and where they are not. And, 
when we do this, the 'correlat ion disappears' in the sense that, in cases 
where wom en are pregnant , the craving for ice cream doesn 't n ow 
make a subsequent birth any more likely, and similarly in cases where 
wom en are not pregnant . Once we take pregnancy into account , the 
craving can be seen to make no further difference to the probability of 
a birth . In this sense, pregnancy 'screens off the correlat ion between 
cravings and births. 

In symbols, there is an initial correlat ion between craving (C) and 
birth (B) 

Pr (B/ C) >  Pr (B) 

but this correlat ion , represented by the dotted line in Diagram 12, is 
'screened o ff' by pregnancy (P) in the sense that: 

Pr (B/ C and P) =  Pr (B/ P) 

and 

Pr (B/ C and no t - P) =  Pr (B/ no t - P). 

Once we kn ow that the craving-birth correlat ion is 'screened off' by 
the prior pregnancy in this way, we can in fer that there is n o causal 
link between them, and that they are join t effects of pregnancy. 

9.6 Spurious Correlat ions 

Of course, we didn't  need the probabilist ic data from the last section to 
tell us that cravings for ice cream don't cause births. This knowledge is 
already part of com m on sense. But in other cases it is precisely such 
probabilist ic data that enable us to find out what is causing what . 

To go back to our earlier example, suppose we find that there is a 
correlat ion between heart disease (H) and alcohol consumpt ion (A). 
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Pr (H / A ) >  Pr (H ) 

This might make us th ink that alcohol consumpt ion causes heart dis-
ease. But n ow suppose that it turns out that gender screens off th is 
correlat ion—the correlat ion disappears when we look separately at 
females (F) and males (not-F). 

Pr (H/ A and F) =  Pr (H/ F) 

and 

Pr (H / A and not - F) =  Pr (H/ no t - F). 

This would sh ow that the initial correlat ion was misleading. Alcoh ol 
consumpt ion turns out not to be a genuine cause of heart disease. The 
two propert ies are on ly correlated because gender is a com m on cause 
of both . Heart disease tends to be found with alcohol consumpt ion 
only because being male conduces both to heart disease and to alco-
hol consumpt ion . (Note that this is just an illust rat ion—I make n o 
claims about its medical accuracy.) 

In such a case the original correlation is said to be 'spurious'. This doesn't 
mean it is not a real correlation. It is—it is still true that heart disease is 
more common among the drinkers. But the correlation is spurious in 
that it doesn't correspond to any direct causal connection—rather the 
two correlated properties are joint effects of a common cause. 

In cases of spurious correlat ion the com m on cause is often referred 
to as a 'con founding' property. 

9.7 Randomized Experiments 

If we find that some initial correlation between F and G is screened off by 
some earlier confounding property E, then we can be confident that F and 
G do not influence each other, but are joint effects of the common cause 
E, as in the pregnancy and heart disease examples just considered. 
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However, if we find that som e part icular earlier E does not screen off 
a correlat ion between F and G, then we can 't immediately infer that G 
does cause F, or vice versa. For there may yet be other com m on causes 
we haven't yet identified. 

For example, suppose that the heart disease/ alcohol consumpt ion 
correlat ion turned out  not to be screened off by gender. We couldn 't 
immediately conclude that alcohol is a cause of heart disease. For it 
may yet be that they are both join t effects of som e other 'confounding' 
property, such as income level, or stress, or anyth ing else—and then 
drinking would again on ly be a sym ptom of this underlying cause, 
and not itself responsible for heart disease. 

The hard way to show that alcohol really is a cause of heart disease 
is to survey the populat ion and check all the con founding propert ies 
that could possibly be responsible for a spurious correlat ion and show 
that none of them screens off the associat ion. 

But there is an easier way to show that one property is really a cause 
of another. Suppose we are able to perform a 'randomized experiment'. 
The idea here is not to look at correlat ions in the populat ion at large, 
but rather to pick out a sample of individuals, and arrange randomly 
for some to have the putat ive cause and some not . 

The poin t of such a randomized experiment is to ensure that any 
correlation between the putat ive cause and effect  does indicate a causal 
connect ion . This works because the randomizat ion ensures that the 
putat ive cause is no longer itself systematically correlated with  any 
other propert ies that exert a causal influence on the putative effect 
(such as gender, or income level, or st ress,..., or anything else). So a 
remaining correlat ion between the putative cause and effect must 
mean that they really are causally connected. 

So, for example, we might take a sample of people, and constrain 
som e of them picked at random to drink alcohol and the rest to 
abstain , in the interests of finding out whether the form er group devel-
ops more heart disease. Now, of course in this part icular case there are 
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obvious pract ical and ethical barriers to such an experiment . But in 
other cases it will be feasible. 

Thus suppose we want to make sure that the correlation between 
some medical treatment and recovery from the relevant disease isn't 
just a spurious result of the treatment being available only to more afflu-
ent sufferers, say, or to some other confounding property. The standard 
solution is to perform a 'randomized clinical trial' by taking a group of suf-
ferers and giving the treatment only to a subgroup chosen at random. 
Many medical experts feel that such randomized trials are the only good 
way to ascertain the efficacy of medical treatments. (See Box 19.) 

9.8 Survey Research 

Randomizat ion is a very good way of demonstrat ing causat ion. But it 
is a mistake, notwithstanding the opin ion of m any in the medical 
establishment, to suppose that it is the only way. Somet imes it is simply 
not possible, for ethical or practical reasons, to conduct a randomized 
trial. Then we have to find out about causes the hard way. We need 
laboriously to survey the overall populat ion and gather data on the 
correlat ion between putative cause and effect with in subgroups of the 
populat ion divided by gender, and income level, and st ress,... and all 
the other things that could possibly be producing a spurious correl-
ation. If none of these screens off the correlat ion, then this will give us 
reason to suppose that it reflects a causal connect ion . 

Perhaps we can never be absolutely sure we have checked through 
every possible confounding factor. But somet imes we can be very 
confident . We will do well to remember the example of smoking and 
lung cancer. When the correlat ion between the two was first noticed, 
the cigarette com pan ies were quick to suggest that it might be spuri-
ous, produced by some com m on cause like social class, or air pollu-
t ion, or genetic factors, o r . . . 
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Now, there was n o quest ion of testing this by a randomized trial. 
(This would have been obviously uneth ical—you can 't take a sample 
of children and force half of them chosen at random to be smokers.) 
But this doesn 't mean we don't n ow kn ow that smoking causes can-
cer. An d the way we found out was precisely by surveying all the 
remotely plausible confounding factors, and showing that none of 
them in fact screens off the sm okin g-can cer correlat ion . 

9.9 Simpson's Paradox 

Screening off occurs when a common cause is responsible for a positive 
correlation between two properties even though there is no direct causal 
connection between them. The lack of a causal connection is exposed 
by the correlation  disappearing when we control for the common cause. 

There can also be cases where a com m on cause produces a posit ive 
correlat ion between two propert ies even though one is in reality a 
negative causal influence on the other. When we control for the 
com m on cause the correlat ion is reversed, and what at first looked like 
a posit ive cause turns out to have the opposite effect . 

Take once more the posit ive correlat ion between heart disease (H) 
and alcohol consumption (A) which initially made it seem that drinking 
causes heart disease. We earlier supposed that when we controlled for 
gender and divided the population into females (F) and males (not-F), the 
correlat ion would disappear. But n ow imagine that controlling for 
gender actually reverses the correlat ion—that  within each gender there 
is less heart disease among the drinkers than the rest. 

Pr (H/ A and F) <  Pr (H/ F) 

and 

Pr (F/ A and not - F) <  Pr (H/ not - F). 
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BOX 19 The Logic of Randomized Trials 
"A 

In a 'randomized clinical trial' of a medical t reatment we take a sample of 

patients with some ailment and divide them into t wo groups at random. The 

't reatment ' group is given the t reatment and the 'control' group is not. We 

then observe whether the recovery rate in the t reatment group is signifi-

cantly higher than in the control group. 

The rat ionale for such trials is t o eliminate the danger of spurious cor-

relations. In t he wider world, perhaps young people, who are likely t o 

recover anyway, are receiving the t reatment more often than old people, 

and this is creating the impression that the t reatment aids recovery. By 

randomizing t he t reatment, we forcibly decorrelate it  f rom any such con-

founding causes as patient age. 

Of course, if  a t reatment does appear efficacious In a part icular trial, this 

could still be due t o stat ist ical fluctuat ions. Perhaps by luck the t reatment 

group contained more people who were going t o recover anyway. How-

even this statistical danger is present in any at tempt t o infer underlying pat-

terns from finite samples, whether or not randomization Is involved. And 

the standard remedy for this statistical danger is t o use bigger samples t o 

diminish the probability of misleading fluctuations. 

But note that bigger samples are no guard against systematically con-

founding causes. Suppose that age does indeed influence both recovery and 

who gets the t reatment . Simply getting bigger samples from the population 

at large isn't  going t o make this confounding influence go away. 

Randomizat ion guards against hidden confounding causes. Big samples 

guard against statistical fluctuations. Both help t o ensure that our inferences 

| ^ ar e secure. 
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This would indicate that drinking actually does som eth in g to prevent 
heart disease, and on ly seem s in it ially to cause it because it is m ore 
prevalen t am on g m en wh o are pron e to heart d isease anyway. 

This kind of correlat ion reversal is widely referred to as 'Simpson's 
paradox'. But in fact there is noth ing terribly paradoxical about such 
exam ples. Th ey are quite an alogous to ord in ary screen ing off. In both 
cases, som e proper t y appears in it ially to be a posit ive cause on ly 
because it is itself posit ively associated with the real cause. The on ly 
d ifferen ce is that in ord in ary cases of screen ing off the putat ive cause 
h as n o real in fluen ce at all, wh ereas in exam ples of Sim pson 's 'para-
dox' it is actually a negat ive cause. 
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EX ER CI S ES 

1. W h en a fair d ie is t h r own , wh at is the con d it ion al p robab ilit y of: 

(a) an even n u m b er , given a n u m b er less t h an t h ree 
(b) an od d n u m b er , given an n u m b er great er t h an t h ree 
(c) a n u m b er great er t h an th ree, given an od d n u m b er 
(d) a n u m b er great er t h an t wo, given an even n u m b e r 
(e) a n u m b e r great er t h an or equal to t wo , given a m u lt ip le of th ree 
(f) a m u lt ip le of t h ree, given an even n u m b er ? 

2. For each of (a)-(f) in qu est ion 1, say wh et h er t h e t wo resu lt s are in d e-
pen den t , posit ively d epen d en t , or n egat ively d epen d en t . 

3. W h ich is the od d on e ou t ? 

(a)Pr (p / q )>Pr (p ) 

(b) Pr(p&q) > Pr(p)Pr(q) 
(c) Pr(not -p/ q) > Pr(not -p) 
(d) Pr(not -p & n ot -q) > Pr(not -p)Pr(not -q) 
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4. Sp e c i fy that p an d q are p rob ab ilist ica lly p osit ive ly d ep en d en t in six 
d ifferen t wa ys . 

5. Su p p o se t h at the p r ob ab ilit y o f h avin g d iabet es (D), b e in g m ale (M), an d 
b ein g u n e m p lo ye d (U) are given b y 

Prob (D) = 0 .05 

Prob (M) = 0 .6 0 

Prob (U) = 0 .30 

An d su p p o se that 

Prob (D&M) = 0 .0 24 

Prob (U&D) = 0 .018 

Prob (U&M) = 0.18 

For each o f t h ese last t h ree p a ir s of p r op er t ies , say wh e t h e r t h e t wo 
p r op er t ies are p osit ive ly d ep en d en t , n egat ively d ep en d en t , o r in d ep en d -
en t . For each of the p air s, wo r k ou t t h e con d it ion a l p r o b ab ili t y o f t h e 
first given t h e secon d . 

6. Su p p o se t h at r esearch sh o ws t h at Pr (n ose can cer / sm okin g) = 0.3 wh ile 
Pr(n ose can cer ) = 0.1. 

Resear ch a lso sh o ws th at : 

Pr(n ose can cer / sm okin g & cit y-d wellin g) = Pr(n ose can cer / cit y-d wellin g) 

= 0 .4 

an d 

Pr(n ose can cer / sm okin g & cou n t r y-d wellin g) = Pr (n ose can cer / cou n t r y-

d wellin g) = 0 .05. 

W h a t d oes all t h is in d icat e ab o u t t h e cau ses of n o se can cer ? 

7. Su p p o se t h at r esearch in t h e Stat e Un iver sit y o f Eu p h o r ia sh o ws that 
Pr (su ccessfu l en t ran ce ap p lica t ion / m ale) = 0 .4 wh ile Pr (su ccessfu l 
en t r an ce ap p lica t ion / fem ale) = 0.3. 
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Su p p o se a lso t h at t h e Un iver sit y deals sep ara t e ly wit h en t r an ce 

ap p lica t ion s t o t h e Ar t s an d Scien ce Facu lt ies, an d t h at fu r t h e r r esearch 

sh o ws th at : 

Pr (su ccessfu l en t r an ce ap p lica t ion / m ale & Ar t s) = 0 .2 wh ile Pr (su ccessfu l 

en t r an ce ap p lica t ion / fem ale & Ar t s) = 0.25 

an d 

Pr (su ccessfu l en t r an ce ap p lica t ion / m ale & Scien ce) = 0.5 wh ile 

Pr (su ccessfu l en t r an ce ap p lica t ion / fem ale & Scien ce) = 0.6 

W h a t d o e s all t h is in d ica t e a b o u t t h e fa c t o r s in flu e n c in g a p p lica t io n 

su ccess? 
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