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Part Il
THE NATURE AND USES OF PROBABILITY



Kinds of Probabllity

7.1 Probabilities of Propositions

Given any proposition p, then we can speak of the probability of p.
For example: the probability that the next card from this pack will
be an ace, that this radium atom will decay before the year 3612, that
Johnny will go to the party, that it will rain tomorrow, ...
Ishall write Pr(p) for the probability of p.

7.2 Kolmogorov’s Axioms

In a moment I shall consider what it might mean to say that a certain
proposition has a certain probability.

But before that we can note some basic arithmetical constraints. If a
way of attaching numbers Pr(p) to propositions p is to count as an ascrip-
tion of probabilities, it must at least observe the following requirements.

(I Forany p,0 < Pr(p) < |
(2) If p is certain, Pr(p) = |

(3) If p and g are incompatible, P(p or q) = Pr(p) + Pr(q)
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These are known as Kolmogorov’s axioms, and were originally laid
out by the great Russian mathematician Andrey Kolmogorov
(1903-1987).

The axioms are simple enough. To illustrate, Pr(Johnny goes to the
party) is a number between o and 1; if it is certain that Johnny will go
to the party, then Pr(Johnny goes to the party) = 1; and if Johnny can’t
go both to the party and the football match, then Pr(Johnny goes to
the party or the football march) = Pr(Johnny goes to the party) +
Pr(Johnny goes to the football match).

7.3 Some Consequences

One immediate consequence of Kolmogorov’s axioms is:
(4) Pr(not-p) = | = Pr(p)
To see why (4) follows from the axioms, note that p and not-p are
incompatible, so by (3)
P(p or not-p) = Pr(p) + Pr(not-p).
But (p or not-p) is certain, so by (2)
Pr{p or not-p) = 1.
The result follows by comparing the right-hand sides of these last two
equations.

Here is another useful consequence. In general, whether or not p
and q are incompatible:
(5) Pr(p or q) = Pr(p) + Pr(q) — Pr(p and q).
Here ‘p or q’ should be understood as ‘p and/or q’, not as ‘p or g but not
both’. (‘Or’ will be understood in this sense throughout the book.

Logicians call this the ‘inclusive’ sense, as opposed to the ‘exclusive’
sense of ‘p or q but not both’.)
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In this inclusive sense, it will be true that Johnny goes to the party or
wears a tie if he does either on its own and also if he does both, by going
to the party in a tie. And so understood Pr(Johnny goes to the party or
wears a tie) = Pr(Johnny goes to the party) + Pr(Johnny wears a tie) —
Pr(Johnny goes to the party and wears a tie).

It is possible to show that (5) follows from Kolmogorov's axioms,
but the proofis somewhat laborious, so I shall leave it as an Exercise.

It is much easier to see why (5) must be true by inspecting a Venn
diagram. When we look at the diagram, we see that simply adding
Pr(p) to Pr(q) would count Pr(p and q) twice—so to get Pr(p or q) we
need to correct by subtracting a Pr(p and q). (See Box 15.)

7.4 )Joint Probabilities

The equivalence (5) told us that

Pr(p or ) = Pr(p) + Pr(q) - Pr(p and q).

However, there is no general rule for the size of Pr(q and p), nor
therefore for how much we need to take away from the sum of
Pr(p) and Pr(q) to get Pr(p or g). It depends on how much the Venn
diagrams for p and q overlap with each other. In our example, it
depends on how likely it is that Johnny will both go to the party
and wear a tie.

We shall consider such joint probabilities—Pr(p and q)—in more
detail in the next two chapters, when we discuss conditional probabil-
ities and probabilistic independence. But we can usefully make some
initial points here.

In some cases, Pr(p and q) will be zero, namely, when p and q are
incompatible—their Venn diagrams don't overlap at all—and then
Pr(p or q) will be the simple sum of Pr(p) and Pr(q), as in Kolmogorov’s
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third axiom. This would be the case in our example if there is no way
that Johnny would go to the party in a tie.

OC

Butin other cases p and q need not be incompatible, and then Pr(p and
q) will be a positive number.

In the extreme case, p will entail g, or q entail p. (For example,
Johnny’s going to the party may require him to wear a tie.)

If p entails q, then the Venn diagram for p is inside that for q, so

Pr(p and q) = Pr(p)

and

Pr(p or q) = Pr(q).
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Box 15 Venn Diagrams

In aVenn diagram we take the points in a plane to represent possible worlds,
and so can use sets of points to represent sets of possible worlds, and in
particular to represent all those possible worlds where some proposition p
is true. The areas of these spaces can then be used to represent the prob-
abilities of the relevant propositions. (Note here how it is possible to equate
a proposition with the set of possible worlds where it is true. This equiva-
lence is widely used in philosophy.)

In the above diagram the proposition p or q corresponds to the points
which are either in the area labelled p, or in the area labelled g, or in both.
And the proposition p and q corresponds to the points which are in both
the area labelled p and in the area labelled g—that is, the cross-hatched
area.

lt is easy to see that, if we tried to work out the area corresponding to
p or q by simply adding the area for p to that for g, we would count the
cross-hatched area twice. So to get the right answer we need to correct by

subtracting the cross-hatched area.
o J
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In our example, if Johnny’s going to the party requires him to wear a
tie, then the Venn diagram for Johnny’s going to the party will be
inside the one for his wearing a tie, so

Pr(Johnny goes to the party and wears a tie) = Pr(Johnny goes to the
party)

and therefore
Pr(Johnny goes to the party or wears a tie) = Pr(Johnny wears a tie).

If q entails p, then the Venn diagram for q is inside that for p, and these
results are reversed.

So Pr(p and q) can sometimes equal Pr(p) and sometime equal Pr(q)
(when p entails q or when q entails p respectively).

But note that Pr(p and q) can never exceed either of these numbers.
Pr(Johnny goes to the party and wears a tie) can’t be greater than
either Pr(Johnny goes to the party) or Pr(Johnny wears a tie).

Sometimes it is easy to forget this. (See Box 16.) But you shouldn't.
Two things both happening (p and q) can never be more likely than
either one happening on its own.

1.5 Subjective and Objective Probabilities

There are two quite different ways of interpreting probability state-
ments—that is, of understanding what it means when we attach
numbers between o and 1 to propositions in such a way as to satisfy
Kolmogorov’s axioms of probability.

We can understand such statements either as reports about subjec-
tive probabilities or as reports about objective probabilities.

Subjective probabilities measure the extent to which agents expect
outcomes. Objective probability measures the real tendencies for those
outcomes to occur.
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Box 16 Linda the Feminist Bank Teller

Let me tell you about Linda. She is 31 years old, single, outspoken, and very
bright. She did an undergraduate degree in philosophy. As a student, she
was deeply concerned with issues of discrimination and social justice, and
also participated in anti-nuclear demonstrations.

Now, which of these propositions is more probable?
(A) Lindais a bank teller.

(B) Linda is a bank teller and is active in the feminist movement.

It is very natural to choose (B). When the psychologists Daniel Kahneman
and Amos Tversky tested people on this question, they found that about 9
out of 10 chose (B). Indeed, when they tested doctoral students in the deci-
sion science programme at Stanford Business School, a group with an inten-
sive training in probability and statistical theory, they still found that over 8
out of 10 chose (B).

Yet (B) cannot be the right answer: Two things cannot be more likely than
one. After all, in every situation where Linda is a bank teller and a feminist,
she will also be a bank teller, and in addition there will be situations where
she is a bank teller without being a feminist.

Something about the Linda story confuses our thinking. (If you're not
convinced that (B) is wrong, it might be helpful to think in terms of money.

Suppose you are going to win £100 for a correct answer. Would you rather

commit yourself to (A) orto (B)!) j

-

7.6 Subjective Probability
Imagine that you are going out for a short walk, and you take both
your sunglasses and your umbrella. Do you believe it is going to

rain?
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Well, you aren't certain it is going to rain—otherwise why take
your sunglasses?

But you aren’t certain that it is not going to rain either—otherwise
why take your umbrella?

In a case like this, it seems natural to say that you have a certain
degree of belief in the proposition it will rain, and that this can be repre-
sented by some number between o and 1. (If you were certain it will
not rain, then your degree of belief would be 0, and if you were certain
it will rain, then your degree of belief would be 1.)

Alternative names for these degrees of belief are ‘subjective pro-
babilities’ or ‘personal probabilities’ or ‘credences’.

7.7 Action, Utility, and Subjective Probability

We can think of degrees of belief as manifesting themselves in choices
of actions (as when you took both your umbrella and your sunglasses
in the example above). In general, the greater degree of belief an agent
attaches to some proposition p, the more that agent will be inclined to
perform actions that will bring good results if p.

The easiest way to connect degrees of belief with choice of actions is
to focus on betting behaviour. Given some proposition p, ask yourself
how much you would be prepared to pay for a bet that will pay £1ifp.
(For example, how much are you prepared to pay to win £1 if Johnny
comes to the party?) The fraction of £1 that you are prepared to stake plaus-
ibly measures your degree of belief in p. You'll be prepared to bet sop
if your degree of belief is 0.5, but only 10p if your degree of belief is o.1.

Maybe you don'’t think of yourself as much of a gambler. But note
that pretty much any action can be construed as a gamble. When you
cross the road, this is presumably because your degree of belief that
you will get to the other side (a good result) is very much bigger than
your degree of belief that you will be run over (a very bad result).

96 THE NATURE AND USES OF PROBABILITY

Many philosophers and economists hold that, in general, when
someone performs an action, this is because the expected utility of that
action is greater than that of the alternative actions available. The idea
here is that the agent is concerned about certain outcomes (getting to
the other side, being run over) whose importance can be measured by
some positive or negative number—its ‘utility. And the expected utility
of an action is then the sum of those utilities each multiplied by the
agent’s degree of belief that the action will lead to that outcome.

Thus suppose the utility of getting to the other side is plus 10, and
your degree of belief that crossing the road will lead to this is 0.9999;
and the utility of being run over is minus 10,000, and your degree of
belief for this is 0.0001. Then the expected utility of crossing the road
will be:

(10 x 09999) + (—10,000 x 0.0001) = 9.999 — | = 8999

and this may well be higher than the expected utility of the alternative
actions currently open to you.

Of course all this is at best a kind of idealization. In truth, there isn't
really a precise answer to the question of exactly how much I believe
p, for every proposition p. There are plenty of propositions that I have
never thought of, and even among those I have thought of are many to
which I have a pretty fuzzy attitude. Nor is it very realistic to suppose
that I can attach numbers to all the things I care about. Still, perhaps
we can go along with the idealization in order to simplify the argu-
ments that follow. (Compare the way in which engineers simplify their
calculations by assuming that everyday objects like a block of con-
crete have precise masses, even though in truth it will always be a bit
vague whether some of the molecules on the surface are attached to
the block or not.)

So I shall assume henceforth that for any person X, at any time t,
and any proposition p, there will be a number between o and 1 that
represents X's degrees of belief at time t in proposition p.
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7.8 Dutch Books

I'said that degrees of belief or subjective probabilities offer one way of
interpreting probability statements—that is, one way of attaching
numbers between o and 1 to propositions in such a way as to satisfy
the axioms of probability.

However, as yet | haven't really shown this, for [ haven't yet shown
that degrees of belief do satisfy the axioms of probability.

And in fact there is no guarantee that they will. Nothing in psych-
ology rules out the possibility that an agent at a time might attach a
degree of belief 0.6 to the proposition it will rain and simultaneously a
degree of belief 0.6 to the proposition it won’t rain, thus violating the
immediate implication of the probability axioms that Pr(p) = 1 -
Pr(not-p). (Maybe the agent wasn't thinking very hard, and somehow
managed to take a positive view of both these propositions at the
same time.)

However, there is an argument that any rational degrees of belief
must conform to the axioms of probability, even if actual degrees of
belief don't always do so.

The argument is that anybody whose degrees of belief violate the
axioms of probability can have a ‘Dutch Book' made against them.
A Dutch Book is a set of bets which are guaranteed to win whatever happens.

By way of illustration, consider the person who believes it will rain to
degree 0.6 and also believes it won't rain to degree 0.6. Well, this person
will happily pay 60p to win £1 on its raining, and also happily pay 60p
to win £1 on its not raining. But anybody who makes this pair of bets
will certainly lose whatever happens, because they will have paid out
£1.20 in total and will only win £1 whether it rains or not.

It is not hard to prove that a Dutch Book can be made against you if
and only if your degrees of belief fail to satisfy the axioms of probability.

(The subject in the above illustration got into trouble because of
degrees of beliefin p and not-p which added to more than 1. This might
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make it seem safe to have degrees of belief that add to less than 1. How-
ever, in that case you could be induced to bet against both p and not-p
in a way that is guaranteed to lose.)

Since it seems clearly irrational to adopt attitudes that can make it
certain that you will incur a loss, it follows that any rational agent will
have degrees of belief that do conform to the probability calculus.
(Such agents are called ‘coherent’; those whose degrees of belief vio-
late the axioms are ‘incoherent’.) (See Box 17.)

Note that there is nothing in this ‘Dutch Book Argument’ to specify
what degrees of belief you should have, beyond requiring that they
must conform to the probability axioms. You can be coherent by hav-
ing a subjective probability of 0.6 for it will rain and of 0.4 for it won't
rain. But you could equally achieve coherence by attaching 0.8 and 0.2
to these two propositions, or 0.15 and 0.8s, or any other combination
of numbers that add up to 1.

The ‘Dutch Book Argument’ requires coherence, but beyond that
leaves it to subjective opinion which particular degrees of belief you
should adopt.

7.9 Objective Probability

Objective probabilities are quite different from subjective ones. They
are out in the world, not in people’s heads. They quantify the objective
tendencies for certain kinds of results to happen. These tendencies
would still have existed even if agents with subjective probabilities
had never evolved.

The clearest examples of objective probabilities come from the
quantum mechanics of subatomic processes. Certain events at this
level are absolutely unpredictable. Take any radium atom. It may decay
in a given time interval or it may not. There is no difference between
those atoms that decay and those that don’t. All that can be said is that
each such atom has a certain objective probability of decaying in a
99
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given interval. (If the interval is 1602 years—the ‘half-life’ of a radium
atom—then there is 0.5 probability of decay in that time.)

It is helpful to think of objective probabilities in terms of frequencies.
If the probability of a single radium atom decaying within its half-life
is 0.5, then about 50% of any sequence of radium atoms will decay in
that time.

(But don't be too quick to equate objective probabilities with fre-
quencies. There are many philosophical pitfalls in the way of any such
equation, most centrally the fact that the observed frequency in any
sequence of events won't generally correspond exactly to the underly-
ing probability. Note how I was careful to say above that ‘about 50% of
any sequence of radium atoms will decay in that time’—not that
exactly 50% will.)

There are plenty of objective probabilities outside the subatomic
world (though perhaps they all depend in some way on quantum
probabilities). For example, the probability that any human embryo
will be male is slightly over o.5. The probability that males in the
United States will develop pancreatic cancer in their lifetime is 0.0138.
The probability that an ace will be dealt first from a well-shuffled pack
is 1/13. And so on.

The ultimate nature of objective probability is a matter of philo-
sophical controversy. But we need not enter into this here. The basic
point is that objective probabilities are genuine features of the exter-
nal world, distinct from subjective degrees of belief.
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Gox 17 Bookmakers and Dutch Books

A good bookmaker aims to make a Dutch Book against the punters. The
bookie wants to induce the punters to make a set of bets that will turn a
profit for the bookie whichever horse wins.

For instance, in a two-horse race between Aramis and Balthazar, the
bookie will be guaranteed a profit whichever horse wins if £100 has been
staked on Aramis at evens, and £120 on Balthazar at 2-1 on. (Evens’ means
that you stake £1 to win £1, and 2-} on’ means you stake £2 to win £1)
These bets mean that the bookie will make £20 if Aramis wins (the £120
stake on Balthzar less the £100 payout on Aramis) and £40 if Bafthazar wins
(the £100 stake on Aramis less the £60 paid out on Balthazar).

This doesn’t necessarily mean that any individual punter is irrational. The
bookie can puil this trick because different punters will sometimes attach
different subjective probabilities to the same outcome. In this sense the
punters taken collectively will violate the axioms of probability. But this
doesn’t mean that any individual punter has ‘incoherent’ degrees of belief.

But you will be irrational if the bookie can make a Dutch Book against
you all on your own. If you yourself put £100 on Aramis at evens, and also put
£120 on Balthasar at 2-1 on, then this indicates that you personally have a
degree of belief in Aramis winning of at least 1/2 and in Aramis not winning

of at least 2/3. Now the bookie is not only sure to win, but you individually

Kare sure to lose. /
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FURTHER READING

Two of my old teachers have written excellent philosophical introductions to
probability:

An Introduction to Probability and Inductive Logic by lan Hacking (Cambridge
University Press 2001).

Probability: A Philosophical Introduction by D. H. Mellor (Routledge 2005).

The Stanford Encyclopedia entry by Alan Hayek is a thorough discussion of the
different ‘interpretations of probability: <http://plato.stanford.edufentries/
probability-interpret>.

Daniel Kahneman's Thinking, Fast and Slow (Allen Lane 20m) explains how
humans are very prone to mistakes in probabilistic reasoning,

EXERCISES

1. If I draw one card from a well-shuffled pack, what is the probability of:

(a) a heart
(b) a king

{c) an honour (A, K, Q, ], 10)
(d) not a heart

{e) an honour and a heart
{f) a heart or a spade

(g) a heart and a spade?

2. If I toss a fair coin four times, what is the probability that I get:
{a) four heads; (b) zero heads; (c) one head; (d) three heads?

Hint: there are 16 equiprobable outcomes for the four-toss sequence.

3. If I'roll two fair dice, what is the probability that they sum to:

(@) 4; (b) 7; (c) 12; (d) an odd number; (e) less than s; (f) either less than 5
or 9; (g) either less than 5 or an even number?

Hint: there are 36 equiprobable ways the dice can land.
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4. If Pr(Johnny at party) = 0.4 and Pr(Jenny at party) = 0.8 and Pr(ohnny
and Jenny at party) = 0.3, what is the probability that

(a) Jenny won’t be there
(b) at least one of them will be there
(c) Jenny will be there but not Johnny?

5. Suppose that you can either go to the beach or to watch the test match.
The beach has an intrinsic utility of plus 10, and the cricket of plus 15.
But there is a 0.5 chance that you will get sunburnt (utility of minus 10)
at the beach, where there is only a 0.3 chance of getting sunburnt at the
cricket. Also, there is a 0.2 chance you will see Jill (plus 20) at the beach,
but only a 0.05 chance you will see her at the cricket. Which option has

the greater expected utility?

6*. Show algebraically how the equation
Pr(p or @) = Pr(p) + Pr(q) -~ Pr(p and q)
follows from Kolmogorov’s axioms. (Hint: note that
(p or q) is logically equivalent to ((p & not-q) or (q))
and that
p is logically equivalent ((p & q) or (p & not-q))

and that the pairs of propositions within the brackets on the right-hand
sides are incompatible.)

103
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Constraints on Credence

8.1 The Principal Principle

The last chapter ended with the contrast between subjective and
objective probabilities. Some readers might have wondered how they
are related.

Not every proposition to which agents attach subjective degrees of
belief will also have an objective probability. You might well have a
certain expectation of Johnny going to the party, say, or of Aramis
winning the 3.30 at Kempton Park, even if there is no good sense in
which these propositions have any objective probability.

But in other cases agents do attach subjective degrees of belief to
propositions that also have an objective probability—for example,
that a given atom will decay in some interval, or that a given embryo
will be male, or that the next card drawn from a well-shuffled pack
will be an ace.

Now, there is no guarantee in such cases that the agent’s subjective
probability will correspond to the objective probability. You might
expect an ace to degree 1/2, even though its objective probability is
only 1/4.
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But even so there is something obvious to say about the relation
between subjective and objective probability in such cases—namely

The Principal Principle:
An agent's subjective probabilities ought to match the objective probabili-
ties, even if in fact they don't.

The term ‘Principal Principle’ was originally coined by David Lewis
(the same philosopher who was a realist about possible worlds) for his
version of the idea that subjective probabilities ought to match objec-
tive probabilities. He adopted this name because he thought that this
idea is fundamental to our understanding of both objective and
subjective probability.

In fact my Principal Principle above is only a rough approximation
to Lewis’ more carefully formulated principle. Butit will do for present
purposes.

Remember that the ‘Dutch Book Argument’ allowed rational
agents a great deal of freedom about the choice of subjective prob-
abilities—the only constraint was that subjective probabilities should
conform to the axioms of probability. The Principal Principle imposes
a further constraint on rational agents—when objective probabil-
ities exist, you should do what you can to make your subjective prob-
abilities match them.

The Principal Principle is obviously sensible. If you are to make the
right choices, your subjective expectations had better not diverge from
the objective probabilities. You will make bad bets if you have a high
degree of belief that an ace will be dealt, when in fact the objective
probability is only 1/4.

Curiously, even though conformity to the Principal Principle is
obviously a good idea, the status of this principle is a matter of
controversy. Some philosophers think it can be justified by appeal to
more basic facts. But others doubt that any such justification is possi-
ble, and view it as itself a fundamental principle of rationality.
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8.2 Conditional Probability

The conditional probability of p given q, Pr(p/q), is the probability to
ascribe to p on the assumption that q.
Itis measured by:

(1) Pr(p/q) = Pr(p & q)/Pr(q).

(In Venn diagram terms, think: the area of g that is also p—that is, the
cross-hatched area as a proportion of the area for q.)

So, for example, we might have the conditional probability that a
throw of a fair die will show an even number, given that it shows a
higher number than three. We can write this Pr(even/over three), and
measure it by:

Pr(even and over three)/ Pr(over three).

This fraction represents the probability of an even result among
the results that are higher than three—and is equal to 23, since
the probability of a result (four or six) that is even and over three is
2/6, while the probability of any result over three (four, five, or six)
is1/2.
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8.3 Updating Degrees of
Belief—Conditionalization

Nowthat we have introduced conditional probabilities, we can explain
a further constraint governing rational degrees of belief. So far we
have seen how the ‘Dutch Book Argument’ implies that rational
degrees of belief must be coherent (that is, satisfy the axioms of prob-
ability), and how the Principal Principle implies that they must match
objective probabilities when these are available. The further constraint is
that rational agents should ‘conditionalize’ whenever they gain new

information.
Suppose that you have rational degrees of belief as follows:

Pr(Johnny goes to the party) = 1/2
Pr(Johnny goes to the party/Jane goes to the party) = 2/3.

Now you learn for sure that Jane is going to the party. What should
your degree of belief in Johnny's going now be?

The answer is obvious enough—2/3. If it was right to think before-
hand that the conditional probability of Johnny going/on the assumption
Jane goesis 2/3, and if now it turns out that Jane is going, then it must be
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right to think that the unconditional probability of Johnny has
increased to 2/3.

Think of it in Venn diagram terms. You now know you are inside the
area of the Venn diagram for Jane's going, so to speak. And you have
already decided that the proportion of this area that covers Johnny
going is 23. So it must now be rational for you to have an unconditional
degree of belief in Johnny going of 2/3.

Changing your degrees of belief in this way is called ‘conditionalization’.
Let us thus formulate

The Principle of Conditiondlization:

If your old conditional degree of belief Pr

L.(P/q) equals k, and you come to

know q, you should set your new degree of belief in p, Pr_ (p), equal to k.

Note that q here needs to be understood as representing everything you
come to know. The principle doesn’t work if q is only part of your new
knowledge.

Thus suppose that in the above example you learn not only that
Jane is going to the party but also that she will be accompanied by Jill.
And suppose that you had always thought that there was almost no
chance that Johnny would go if both Jane and Jill did. (You had a very
low original conditional probability Pr_,(Johnny goes/Jane and Jill go)
even though your original Pr_ (Johnny goes/Jane goes) was 2/3.)

While it is still true that you have learned that Jane will go, it is no
longer a good idea to attach a 2/3 probability to Johnny going, just on
the grounds that your Pr_,(Johnny goes/Jane goes) = 2/3. And this is
precisely because you have learned more than that Jane will go to the
party. You now know not just that you are inside Jane’s Venn diagram,
so to speak, but more specifically that you are inside that bit of it where
Jillalso goes to the party. And the proportion of that area where Johnny
goes too is very small.

Itis generally agreed that the Principle of Conditionalization is valid.
But, just as with the Principal Principle, there is no agreement about
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why it is valid. As before, some philosophers think it is a basic principle
of rationality, while others think that it can be justified by further
considerations.

Note in this connection that the Principle of Conditionalization is
not simply a consequence of the Dutch Book Argument for coherence.
That earlier argument showed that the axioms of probability must be
respected by all the degrees of belief you adopt at any given time. But the
Principle of Conditionalization concerns the way you should change
your degrees of belief over time in response to evidence, substituting
your old degrees of belief Pr_ (—) by new ones Pr__ (—).

You will satisfy the Dutch Book Argument as long as your old
Pr_,(—)s and your new Pr__(—)s are each separately coherent. The
Principle of Conditionalization places a further constraint on the how
these two sets of degrees of belief are related.

8.4 Bayes’ Theorem

There is a simple probability equation that casts some useful light on
the workings of conditionalization:

(2) Pr(hve) = Pr(h) x Pr(e/n)/Pr(e).

This equation, which you can check follows very quickly from the
equation (1) for conditional probability, is known as Bayes’ Theorem,
after the eighteenth-century English clergyman who first proved it.
To see the significance of this equation, consider some case where
you gain some evidence e and are concerned with its bearing on some
hypothesis h. According to the Principle of Conditionalization, you
should adopt a new Pr__ (h) that is equal to your old conditional
Pr ,(h/e). But Bayes' Theorem tells us that Pr_ (h/e) is equal to Pr  (h) x
Pr_,(e/h)/Pr_,(e). So we can see that the two together imply that

(3) P (h) = Pr_ (h) x Pr_ (e/h)/Pr_ (e).
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We can view this as a recipe for transforming your old degree of belief in
htoanew one when yourlearn e—multiply your Pr_, (h) by the factor on
theright-hand side. This tells you that you should increase your degree of
beliefinhtojustthe extent thatPr  (e/h) exceeded Pr_,(e}—thatis, tojust
the extent that e was to be expected given h but not to be expected
otherwise.

Soviewed, (3) seems eminently sensible. The hypothesis his confirmed
if it successfully predicts something that would otherwise be unexpected.

Inaddition to thus explaining why a hypothesis gains more credibility
from theverification of surprising rather than unsurprising consequences,
Bayes’ Theorem also illuminates a wide range of other quirks and puzzles
about the way evidence confirms hypotheses.

For example, (3) explains why it is a mistake to ignore the prior prob-
ability ofhin assessing how probable it is shown to be by e. (This surpris-
ingly common mistake is known as the ‘base rate fallacy’. See Box 18.)

Because of the significance of Bayes’ theorem, the term ‘Bayesian’ is
often found in discussions of probability. However, this term has no
very definite meaning. It is probably most often used to refer to any
view that takes subjective degrees of belief seriously and holds that
they are subject to some rational principles. But sometimes it is used
more precisely, to refer specifically to the idea that degrees of belief
should be updated according to the Principle of Conditionalization.

8.5 Conditional Probabilities
and Conditional Statements

A conditional probability Pr(q/p) is the probability of q on the assumption
that p.

Some readers might have wondered how such conditional probabil-
ities relate to conditional statements of the form if p, then q. (For example: if
Jane goes to the party, then Johnny will go too.)
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Afterall, doesn’t a conditional statement amount to something like
stating q on the assumption that p? And given this, shouldn’t we expect
the probability of the conditional statement Pr(if p, then q) to be equal
to the conditional probability Pr(q/p)?

As it happens, this is a horribly complicated topic.

An initial difficulty is that there are different kinds of conditional
statement. In a moment I shall distinguish between material, indicative,
and subjunctive conditionals. And even after we have distinguished
them, it is not obvious how to understand them. While material con-
ditionals are clear enough, the analysis of indicative and subjunctive
conditionals is hugely controversial.

It would take us too far afield to analyse these constructions
properly here. My aim in the brief remainder of this chapter will sim-
ply be to show you why we need to recognize different kinds of
conditionals.

What about the question with which I'started this section—is the
probability of a conditional statement Pr(if p, then q) equal to the
conditional probability Pr(q/p)? Here I can do no more than simply
tell you that this simple equation doesn't work for any kind of
conditional if ..., then’ statement—which is not to deny that there
are important connections between conditional statements and
conditional probabilities.

8.6 Material Conditionals

If you have done an elementary logic course, you will have been intro-
duced to a construction, normally written ‘p—q’, which is defined as
being true as long as it is not the case that p is true and q is false.

This is the ‘material conditional’.

Given its definition, it is easy to see that ‘p—q’ is equivalent to ‘not-
(p and not-q)’ or again to ‘either not-p or q’.
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Itisnormal in elementary logic courses to read ‘p—q’as ‘if p, then q’.

And indeed the material conditional does have strong similarities
with everyday claims of the form ‘if p, then q'. In particular, it shares
the feature that, when you add knowledge of p to them, then you can
infer q. Just as p together with ‘if p, then q implies q, so does p together
with ‘p—q’. (This is an immediate consequence of the definition of
‘p—q’ given above—you can check it as an exercise.)

Given the similarities, there is no great harm in reading ‘p—q’ as
equivalent to everyday claims of the form ‘if p, then q’ when exploring
elementary logic. But there are strong reasons to doubt that the two
constructions are really the same.

Note that ‘p—q’ is guaranteed to be true whenever p is false, whatever
q says, and also to be true whenever q is true, whatever p says. (Remember,
‘p—qis true as long as it is not both the case that p is true and q is false.)

So ‘David Papineau goes to Antigua in November — the gold price
rises in December’ is guaranteed to be true, as long as I do not go to
Antigua in November.

Similarly ‘Cesc Fabregas plays for Arsenal — Hugh Grant lives in
London’is guaranteed to be true, simply in virtue of Hugh Grantliving
in London.

Now, as we shall see in a moment, the everyday construction ‘if...,
then...” can be used to make two different kinds of claim—findicative’
and ‘subjunctive’ conditional claims. But we can already see reasons
why the material conditional ‘p—q’ must differ from both of these.
In ordinary English, any claim of the form ‘if p, then q’ requires some
connection between p and q, not just the falsity of the antecedent p or
the truth of the consequent q.

So, on any reading of the English construction ‘if..., then..., my
not going to Antigua in November isn't enough to ensure the truth of
‘if David Papineau goes to Antigua in November, then the gold price
will rise in December'—for there may be no connection between my
November location and the December gold price.
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Box 18 The Base Rate Fallacy

You are worried about a kind of cancer (h) which is present in 1% of people
fike you. There is a simple test which invariably detects the cancer, though it
does give a false positive result in 10% of people without it. You take the
test, and get a positive result (e). What now is the probability you have the
cancer?

Well, you might think that, since the test is only 10% unreliable, the
answer must be 90%. But that would be quite wrong There is still little
more than a 9% probability of cancer.

To see why, recall that, once you discover e, you should set your new
Pr . (h) equal to your old Pr_,(h/e). And Bayes’ Theorem tells you to com-
pute this by multiplying your old Pr. (h) by Pr_ (e/h)/Pr, (e).

Two of these terms are easy. Pr_(h) was given as 1%,and Pr_ (e/h) is I,
since the test invariably detects the cancer: Pr_ (e) is a bit messier: what is
the probability of a positive result for a person taken at random? Well, the
1% of cancer sufferers will definitely give positive results, and the 99% of
non-sufferers will give 10% false positives—which sums to 10.9%. So
Pr_ (h) x Pr_ (e/h)/Pr_(e) = 001 x 1/0.109 = 0.0917. So you should set
your Pr__ (h) to just over 9%,

Think of it like this. If 1,000 people take the test, [0 will give a positive
result because they have the cancer—but 99 healthy people will give false
positives. So a bad result still leaves you with only a 10/1 09 ~ 0.0917 prob-
ability of cancer.

The tendency to overestimate the significance of such tests is called the

‘base rate fallacy’, because it is due to ignoring the low 'base rate’ or initial

probability of having the cancer: It is disturbingly common in everyday life.

N
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Andsimilarly Hugh Grant’s living in London isn’t enough to ensure
the truth of if Cesc Fabregas plays for Arsenal, then Hugh Grant lives in
London—for Cesc Fabregas’ employment may have nothing to do
with Hugh Grant’s residence.

Given these differences, it seems clear that the material conditional
works differently from any version of the everyday construction ‘if
p. thenq’. (Indeed, we might feel that ‘material conditional is something
of a misnomer, given its marked difference from any everyday ‘if
p,thenq’.)

8.7 Indicative and Subjunctive Conditionals

Consider this pair of claims.
(4) 'If Oswald didn't kill Kennedy, then someone else did’

This claim is obviously true. There is no doubt that President Kennedy
was killed by somebody. If Lee Harvey Oswald wasn't in fact the guilty
party, then some else must have done it.

(5) 'If Oswald hadn't killed Kennedy, then someone else would have.!

This claim is very doubtful. The Warren Commission investigated the
matter very thoroughly and concluded that Oswald was working
alone. In their view, if Oswald’s plans had somehow been frustrated,
then Kennedy would not have been killed—that is, they concluded
that (5) is false.

Since (4) is clearly true and (5) very likely false, they must mean
different things.

! Ishould note that there are a few philosophers who maintain that the indicative
version of the everyday ‘if p, then q’ is at bottom no different from the mate-
rial conditional, and that the apparent discrepancies can be explained away.
But this is very much a minority position.
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But note that both claims are of the form if p, then q" and both have
the same antecedent p—Oswald not killing Kennedy—and the same
consequent g—someone ¢lse killing Kennedy.

The only difference between the two claims is that (4) is in the
indicative mood (‘... didn't kill ... did.) while (5) is in the subjunctive
mood (... hadn’tkilled ... would have’).

Accordingly, claims like (4) are called indicative conditionals and
claims like (5) subjunctive conditionals. ‘

(Sometimes subjunctive conditionals are called ‘counterfactual’ on
the grounds that they imply the falsity of their antecedents. But this
terminology can be misleading, given that plenty of indicative condi-
tionals also have antecedents that are pretty sure to be false—(4) would
be acase in point.)

8.8 Rational and Metaphysical Changes

Let me say a bit more about the difference between indicative and
subjunctive conditionals. (I can only scratch the surface here. The
analysis of these constructions is hugely controversial, with a litera-
ture stretching to thousands and thousands of articles. There are
philosophers who spend their whole lives working on conditionals—
indeed there are philosophers who work only on indicative condi-
tionals, and others who work only on subjunctive conditionals.)

Indicative conditionals are to do with rational changes of belief.
They tell us what we should believe on learning the antecedent p.

Subjunctive conditionals are to do with metaphysical alternatives.
They tell us what difference p would have made to the course of
history.

To illustrate how indicative conditionals work, suppose that some-
one whom you trust whispers in your ear that Lee Harvey Oswald
definitely didn't kill President Kennedy. What should you now think?
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Well, you know full well that Kennedy was assassinated, and your new
information doesn’t contradict this. So the obvious conclusion is that
there was a different assassin. Thus: ‘If Oswald didn't kill Kennedy,
then someone else did.’

Now take the corresponding subjunctive conditional. The question
now is the difference it would have made to history had Oswald not
killed Kennedy, not how such information should impact on your
beliefs. And to this question the obvious answer (assuming the War-
ren Commission was right) is that Kennedy would not have been
assassinated. Thus: ‘If Oswald hadn’t killed Kennedy, then no one else
would have.’

When we evaluate indicative conditionals, we add p to all our cur-
rent beliefs, make the minimum adjustments needed to accommodate
it, and consider whether q still follows.

But when we evaluate subjunctive conditionals, we proceed differ-
ently. We first remove from our current beliefs all those whose truth is
a causal consequence of not-p—and only then do we add p with mini-
mal adjustments and consider whether q follows. Since we are con-
cerned with the impact p would have on the course of history, we
don’t want to reason on the basis of facts that would have been caus-
ally altered if p had obtained.

That's why we don’t hold onto Kennedy’s assassination when we
make the subjunctive assumption ‘if Oswald hadn't killed Kennedy ...
Removing Oswald’s killing Kennedy removes the cause of Kennedy’s
assassination.

By contrast, we do hold onto Kennedy's assassination when we
make the indicative assumption ‘if Oswald didn’t kill Kennedy...". Since
we are sure that Kennedy actually was killed, we hang onto this infor-
mation in evaluating the indicative conditional.
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FURTHER READING

Colin Howson and Peter Urbach’s Scientific Reasoning: The Bayesian Approach
(Open Court second edition 1993) shows how ‘Bayesianism’ illuminates many

aspects of scientific reasoning.

Paul Horwich’s Probability and Evidence (Cambridge University Press 1982) covers
much of the same ground.

There is a useful Stanford Encyclopedia entry on Bayesian thinking by William
Talbott: <http://plato.stanford.edu/entries/epistemology-bayesian>.

A Philosophical Guide to Conditionals (Oxford University Press 2003) by Jonathan
Bennett is a masterly introduction to this complex topic.

Mark Sainsbury’s Logical Forms (Blackwell second edition 2001) contains
much useful material about conditionals and their connection with

probabilities.

See also <http://plato.stanford.edu/entries/conditionals> by Dorothy Edgington.

EXERCISES

1. If Pr(wind) = 0.6, Pr(rain) = 0.5, and Pr(wind and rain) = 0.4, what is
Pr(wind|rain), and what is Pr(rain/wind)?

2. 1f 1 draw one card from a well-shuffled pack, what is the conditional

probability of:

(a) a court cart (A, K, Q, ) given a heart

(b) a court card given not a heart

(c) a heart given a court card

(d) not a heart given a court card

(e) an even number given a non-court card
(f) an odd number given a non-court card
(g) an even number given a court card?

3. Suppose you have good reason to hold that Pr(h) = 0.1, Pr(e) = 0.2,and Pr(e/h)
is 0.8. Then you learn e. What probability should you now attach to h?
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4. You have a 10% degree of belief that a coin is not fair but has a 75% bias in
favour of Heads. You toss it twice and see two Heads. What now should
be your degree of belief that it is fair?

5. Which of these conditionals are indicative and which subjunctive?

(a) If you have visited the moon, then you have forgotten being there.

{b) If you had visited the moon, then you would have forgotten being there.

(c) If the British Prime Minister in 2012 were a woman, she would be in
disguise.

(d) If the British Prime Minister in 2012 is a woman, she is in disguise.

() If you have eaten arsenic, then you are dead now.

(f) 1f you had eaten arsenic, then you would be dead now.

(g) If the foundations of Buckingham Palace had crumbled to dust, this
wouldn’t have made it collapse.

(h) If the foundations of Buckingham Palace have crumbled to dust, this
hasn’t made it collapse.

6. Which of the conditionals in the last question are true, and which false?
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Correlations and Causes

9.1 Probabilistic Independence

We say that p is probabilistically independent of q when Pr(p/q) = Pr(p).

In such a case, the probability of p on the assumption that q is no
different from the probability of p in general. Assuming q doesn'’t
alter the probability of p.

To illustrate, take the propositions that a card drawn from a pack
will be an honour (10, Jack, Queen, King, or Ace) and that it will be a
heart. The former is probabilistically independent of the latter. An
honour is no more nor less likely on the assumption that the card is a
heart than itis anyway.

Let us check the arithmetic. Pr(honour/heart) is Pr(honour and
heart)—which is s/s2—divided by Pr(heart)—which is 1/4. So
Pr(honour/heart) is 5/13, which is just the same as Pr(honour) itself. As
I said, getting a heart doesn't make it any more or less likely that you
will get an honour.

Note that p is probabilistically independent of q just in case

(1) Pr(p and q) = Pr(p)Pr(q).

(To see why, remember that
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Pr(p/q) = Pr(p and q)/Pr(q).
So, if
Pr(p/g) = Pr(p) (that is, p is probabilistically independent of q)

then

Pr(p and q) = Pr(p)Pr(q).

and vice versa.)

Probabilistic independence thus means that p and q don't occur
together any more (or less) often than you would expect given their
separate probabilities of occurrence.

We also now see that probabilistic independence is symmetrical. If
p is probabilistically independent of q, then q is probabilistically inde-
pendent of p.

In our example, we have already seen that getting an honour is
probabilistically independent of getting a heart. The probability of an
honour isn’t altered by getting a heart—it’s 5/13 either way.

So by the same coin, getting a heart must be independent of getting
an honour—and if you think for a second you'll see that the probabil-
ity of a heartis indeed not altered by getting an honour—it's 1/4 either
way.

Just as getting a heart doesn’t make it any more or less likely that
you will get an honour, so getting an honour doesn’t make it any more
or less likely that you will get a heart,

We see that when two results are independent, neither gives any
information about the other.

9.2 Probabilistic Dependence

When Pr(p and q) > Pr(p)Pr(q), then we say p and q are positively prob-
abilistically dependent.
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This is equivalent to the requirements that

Pr(p/q) > Pr(p)

or that

Pr(a/p) > Pr(q).

In such cases q makes p more likely than it would be otherwise, and p
makes q more likely than it would be otherwise.

So for example, getting an honour and getting a 9-or-a-10 are posi-
tively probabilistically dependent. The probability of having both (by
getting a 10) is 1/13, which is greater than the product of the probabil-
ities of getting an honour (5/13) and getting a 9-or-10 {2/13).

When Pr(p and q) < Pr(p)Pr(q)—equivalently Pr(p/q) < Pr(p) or Pr(q/p)
< Pr(q)—then we say p and q are negatively probabilistically dependent.

Getting an honour and getting an even numbered card (2, 4, 6,8, or
10) are negatively probabilistically dependent. The probability of get-
ting both these results (you need a 10 again) is 1/13—which is less than
the product of the probabilities of getting an honour (5/13) and getting
an even-numbered card (1/2).

9.3 Correlation

We speak of correlations when we study the objective probabilistic
dependencies between distinct properties of individuals. The individ-
uals might be people, places, countries, cars, stars, cows,... pretty
much anything whatever. If we were studying people, our properties
might be gender, alcohol consumption, and heart disease, say. If we
were studying cows, our properties might be diet, breed, weight, and
fertility. And so on.

Suppose we represent the properties of interest in some such case
as F, G, H,... We can then use Pr(F), Pr(G), Pr(H),...to represent the
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objective probability that any given individual will have propertyF, G,
H,...respectively.

Ifinsucha case Fand Gare positively probabilistically dependent—
Pr(F/G) > Pr(F)—then we can say that F and G are correlated.

A correlation between Fand G thus means that F occurs more often
in the presence of G than otherwise (and vice versa). For example, we
might find that in people heart disease (H) and drinking alcohol (A)
are correlated—Pr(H/A) > Pr(H). This tells us that the probability of
heart disease among the alcohol drinkers is higher than in the popula-
tion in general.!

9.4 Causation and Correlation

We're often told that correlation doesn’t prove causation. And that’s
true enough—a craving for ice cream is correlated among women with
giving birth some months later, but the craving doesn’t cause the birth.

In this case, the correlationisn’t due to the craving causing the birth,
orvice versa, but to the presence of a common cause for both events—
namely, pregnancy. The craving is thus a symptom of the impending
birth, but not its cause.

Still, even if correlation doesn't always mean causation, because of
the possibility of common causes, it is arguable that correlation
between two properties does mean that either one causes another or
they have a common cause.

To have a correlation without any such causal explanation would be
an absurd general coincidence. Once-off coincidences are only to be

Statistic textbooks will normally give a more complicated definition of cor-
relation, to deal with quantitative properties like weight as well as on-off
qualitative properties like gender. But we can ignore quantitative properties
here, since they do not affect the basic philosophical points.

122 THE NATURE AND USES OF PROBABILITY

expected. Sometimes Jill and Jane will happen to find themselves wear-
ing the same colour dress just by chance. But if this turns out to be a
regular pattern, then it calls for explanation. (Either Jill is copying Jane,
or Jane is copying Jill, or they are both influenced by the same fashion
advice.)

If we accept that a correlation between two properties does indeed
imply that either one is causing the other or that they have a common
cause, then we can use this to help usinfer causation from correlation.
In particular, if we can rule out the possibility of a common cause,
then we can infer a direct causal connection.

9.5 Screening Off

Interestingly, common causes have a distinctive probabilistic profile.
They typically ‘screen off” the correlation between their joint effects, in
the sense that this correlation disappears when we ‘control for the com-
mon cause’. This allows us to identify common causes from probabilis-
tic patterns, and thereby tell whether or not correlations signify causal
connections.

Let me explain this more slowly. Take the craving-birth correlation
again. ‘Controlling for the common cause’ means looking separately

causes causes

correlation screened off
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at cases where women are pregnant and where they are not. And,
when we do this, the ‘correlation disappears’ in the sense that, in cases
where women are pregnant, the craving for ice cream doesn’t now
make a subsequent birth any more likely, and similarly in cases where
women are not pregnant. Once we take pregnancy into account, the
craving can be seen to make no further difference to the probability of
a birth. In this sense, pregnancy ‘screens off the correlation between
cravings and births.

In symbols, there is an initial correlation between craving (C) and

birth (B)
Pr(B/C) > Pr(B)
but this correlation, represented by the dotted line in Diagram 12, is

‘screened off” by pregnancy (P) in the sense that:
Pr(B/C and P) = Pr(B/P)

and

Pr(B/C and not-P) = Pr(B/not-P).

Once we know that the craving-birth correlation is ‘screened off’ by
the prior pregnancy in this way, we can infer that there is no causal
link between them, and that they are joint effects of pregnancy.

9.6 Spurious Correlations

Of course, we didn’t need the probabilistic data from the last section to
tell us that cravings for ice cream don’t cause births. This knowledge is
already part of common sense. But in other cases it is precisely such
probabilistic data that enable us to find out what is causing what.

To go back to our earlier example, suppose we find that there is a
correlation between heart disease (H) and alcohol consumption (A).
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Pr(HIA) > Pr(H)

This might make us think that alcohol consumption causes heart dis-
ease. But now suppose that it turns out that gender screens off this
correlation—the correlation disappears when we look separately at
females (F) and males (not-F).

Pr(H/A and F) = Pr(H/F)
and
Pr(H/A and not-F) = Pr(H/not-F).

This would show that the initial correlation was misleading. Alcohol
consumption turns out not to be a genuine cause of heart disease. The
two properties are only correlated because gender is a common cause
of both. Heart disease tends to be found with alcohol consumption
only because being male conduces both to heart disease and to alco-
hol consumption. (Note that this is just an illustration—I make no
claims about its medical accuracy.)

Insuchacasethe original correlation is said to be ‘spurious’. This doesn'’t
mean it is not a real correlation. It is—it is still true that heart disease is
more common among the drinkers. But the correlation is spurious in
that it doesn’t correspond to any direct causal connection—rather the
two correlated properties are joint effects of a common cause.

In cases of spurious correlation the common cause is often referred
to as a ‘confounding’ property.

9.7 Randomized Experiments

If we find that some initial correlation between F and G is screened off by
some earlier confounding property E, then we can be confident that Fand
G do not influence each other, but are joint effects of the common cause
E, asin the pregnancy and heart disease examples just considered.
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However, if we find that some particular earlier E does not screen off
a correlation between F and G, then we can’t immediately infer that G
does cause F, or vice versa. For there may yet be other common causes
we haven't yet identified.

For example, suppose that the heart disease/alcohol consumption
correlation turned out not to be screened off by gender. We couldn’t
immediately conclude that alcohol is a cause of heart disease. For it
may yet be that they are both joint effects of some other ‘confounding’
property, such as income level, or stress, or anything else—and then
drinking would again only be a symptom of this underlying cause,
and not itself responsible for heart disease.

The hard way to show that alcohol really is a cause of heart disease
is to survey the population and check all the confounding properties
that could possibly be responsible for a spurious correlation and show
that none of them screens off the association.

But there is an easier way to show that one property is really a cause
of another. Suppose we are able to perform a ‘randomized experiment .
The idea here is not to look at correlations in the population at large,
but rather to pick out a sample of individuals, and arrange randomly
for some to have the putative cause and some not.

The point of such a randomized experiment is to ensure that any
correlation between the putative cause and effect does indicate a causal
connection. This works because the randomization ensures that the
putative cause is no longer itself systematically correlated with any
other properties that exert a causal influence on the putative effect
(such as gender, or income level, or stress, ..., or anything else). So a
remaining correlation between the putative cause and effect must
mean that they really are causally connected.

So, for example, we might take a sample of people, and constrain
some of them picked at random to drink alcohol and the rest to
abstain, in the interests of finding out whether the former group devel-
ops more heart disease. Now, of course in this particular case there are
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obvious practical and ethical barriers to such an experiment. But in
other cases it will be feasible.

Thus suppose we want to make sure that the correlation between
some medical treatment and recovery from the relevant disease isn’t
justa spurious result of the treatment being available only to more afflu-
ent sufferers, say, or to some other confounding property. The standard
solution is to perform a ‘randomized clinical trial’ by taking a group of suf-
ferers and giving the treatment only to a subgroup chosen at random.
Many medical experts feel that such randomized trials are the only good
way to ascertain the efficacy of medical treatments. (See Box 19.)

9.8 Survey Research

Randomization is a very good way of demonstrating causation. But it
is a mistake, notwithstanding the opinion of many in the medical
establishment, to suppose that it is the only way. Sometimes it is simply
not possible, for ethical or practical reasons, to conduct a randomized
trial. Then we have to find out about causes the hard way. We need
laboriously to survey the overall population and gather data on the
correlation between putative cause and effect within subgroups of the
population divided by gender, and income level, and stress, ... and all
the other things that could possibly be producing a spurious correl-
ation. If none of these screens off the correlation, then this will give us
reason to suppose that it reflects a causal connection.

Perhaps we can never be absolutely sure we have checked through
every possible confounding factor. But sometimes we can be very
confident. We will do well to remember the example of smoking and
lung cancer. When the correlation between the two was first noticed,
the cigarette companies were quick to suggest that it might be spuri-
ous, produced by some common cause like social class, or air pollu-
tion, or genetic factors, or...
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Now, there was no question of testing this by a randomized trial.
(This would have been obviously unethical—you can’t take a sample
of children and force half of them chosen at random to be smokers.)
But this doesn't mean we don’t now know that smoking causes can-
cer. And the way we found out was precisely by surveying all the
remotely plausible confounding factors, and showing that none of
them in fact screens off the smoking—cancer correlation.

9.9 Simpson’s Paradox

Screening off occurs when a common cause is responsible for a positive
correlation between two properties even though there is no direct causal
connection between them. The lack of a causal connection is exposed
by the correlation disappearing when we control for the common cause.

There can also be cases where a common cause produces a positive
correlation between two properties even though one is in reality a
negative causal influence on the other. When we control for the
common cause the correlation is reversed, and what at first looked like
a positive cause turns out to have the opposite effect.

Take once more the positive correlation between heart disease (H)
and alcohol consumption (A) which initially made it seem that drinking
causes heart disease. We earlier supposed that when we controlled for
gender and divided the population into females (F) and males (not-F), the
correlation would disappear. But now imagine that controlling for
gender actually reverses the correlation—thatwithin each gender there
is less heart disease among the drinkers than the rest.

Pr(H/A and F) < Pr(H/F)
and

Pr(F/A and not-F) < Pr(H/not-F).
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KBOX 19 The Logic of Randomized Trials

in a ‘randomized dlinicat trial’ of a medical treatment we take a sample of
patients with some ailment and divide them into two groups at random. The
‘treatment’ group is given the treatment and the ‘control’ group is not. We
then observe whether the recovery rate in the treatment group is signifi-
cantly higher than in the control group.

The rationale for such trials is to eliminate the danger of spurious cor-
relations. In the wider world, perhaps young people, who are likely to
recover anyway, are receiving the treatment more often than old people,
and this is creating the impression that the treatment aids recovery. By
randomizing the treatment, we forcibly decorrelate it from any such con-
founding causes as patient age.

Of course, if a treatment does appear efficacious in a particular trial, this
could still be due to statistical fluctuations. Perhaps by luck the treatment
group contained more people who were going to recover anyway. How-
ever, this statistical danger is present in any attempt to infer underlying pat-
terns from finite samples, whether or not randomization is involved. And
the standard remedy for this statistical danger is to use bigger samples to
diminish the probability of misleading fluctuations.

But note that bigger samples are no guard against systematically con-
founding causes. Suppose that age does indeed influence both recovery and
who gets the treatment. Simply getting bigger samples from the population
at large isn't going to make this confounding influence go away.

Randomization guards against hidden confounding causes. Big samples

guard against statistical fluctuations. Both help to ensure that our inferences

kare secure, J
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This would indicate that drinking actually does something to prevent
heart disease, and only seems initially to cause it because it is more
prevalent among men who are prone to heart disease anyway.

This kind of correlation reversal is widely referred to as ‘Simpson’s
paradox’. But in fact there is nothing terribly paradoxical about such
examples. They are quite analogous to ordinary screening off. In both
cases, some property appears initially to be a positive cause only
because it is itself positively associated with the real cause. The only
difference is that in ordinary cases of screening off the putative cause
has no real influence at all, whereas in examples of Simpson’s ‘para-
dox’it is actually a negative cause.
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FURTHER READING

Judea Pearl's Causality: Models, Reasoning and Inference (Cambridge University
Press 2000) is a detailed study of the relationship between causes and

correlations.

There is a useful section on ‘Causal Modelling’ in Christopher Hitchcock’s
Stanford Encyclopedia entry on Probabilistic Causation: <http://plato.stanford.
edu/entries/causation-probabilistic>.

There is also a Stanford Encyclopedia entry specifically on Simpson’s Paradox
by Gary Malinas and John Bigelow: <http://plato.stanford.edu/entries [paradox-
simpson>.

John Worrall offers an informative critical discussion of the logic of rand-
omized trials in ‘Why There’s No Cause to Randomize’, The British Journal for the
Philosophy of Science 2007.

EXERCISES

1. When a fair die is thrown, what is the conditional probability of:

(a) an even number, given a number less than three

(b) an odd number, given an number greater than three

(c) a number greater than three, given an odd number

(d) a number greater than two, given an even number

() a number greater than or equal to two, given a multiple of three
(f) a multiple of three, given an even number?

2. For each of (a)—(f) in question 1, say whether the two results are inde-
pendent, positively dependent, or negatively dependent.

3. Which is the odd one out?

(a) Pr(p/q) > Pr(p)

(b) Pr(p&q) > Pr(p)Pr(q)

not-p/q) > Pr(not-p)

not-p & not-q) > Pr(not-p)Pr{not-q)
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Suppose also that the University deals separately with entrance

4. Specify that p and q are probabilistically positively dependent in six
applications to the Arts and Science Faculties, and that further research

different ways.
shows that:
5. Suppose that the probability of having diabetes (D), being male (M), and

icati le & Arts) = 0.2 while Pr{successful
being unemployed (U) are given by Pr{successful entrance application/male & Arts) (

entrance application/female & Arts) = 0.25
Prob (D) = 0.05

Prob M) = 0.60 and

Prob (U) = 0.30 Pr(successful entrance application/male & Science) = o.5 while
And suppose that Pr(successful entrance application/female & Science) = 0.6

Prob (D&M) = 0.024 What does all this indicate about the factors influencing application
Prob (U&D) = 0.018 success?

Prob (U&M) = 0.18

For each of these last three pairs of properties, say whether the two
properties are positively dependent, negatively dependent, or independ-
ent. For each of the pairs, work out the conditional probability of the
first given the second.

6. Suppose that research shows that Pr(nose cancer/smoking) = 0.3 while
Pr(nose cancer) = 0.1.

Research also shows that:

Pr(nose cancer/smoking & city-dwelling) = Pr(nose cancer/city-dwelling)

=04
and

Pr(nose cancer/smoking & country-dwelling) = Pr(nose cancer/country-

dwelling) = 0.0s.
What does all this indicate about the causes of nose cancer?
7. Suppose that research in the State University of Euphoria shows that

Pr(successful entrance application/male) = 0.4 while Pr(successful
entrance application/female) = 0.3.
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