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illusion. J Neurophysiol 103: 1518–1531, 2010. First published Jan-
uary 20, 2010; doi:10.1152/jn.00814.2009. Which is heavier: a pound
of lead or a pound of feathers? This classic trick question belies a simple
but surprising truth: when lifted, the pound of lead feels heavier—a
phenomenon known as the size–weight illusion. To estimate the weight
of an object, our CNS combines two imperfect sources of information: a
prior expectation, based on the object’s appearance, and direct sensory
information from lifting it. Bayes’ theorem (or Bayes’ law) defines the
statistically optimal way to combine multiple information sources for
maximally accurate estimation. Here we asked whether the mechanisms
for combining these information sources produce statistically optimal
weight estimates for both perceptions and actions. We first studied the
ability of subjects to hold one hand steady when the other removed an
object from it, under conditions in which sensory information about the
object’s weight sometimes conflicted with prior expectations based on its
size. Since the ability to steady the supporting hand depends on the
generation of a motor command that accounts for lift timing and object
weight, hand motion can be used to gauge biases in weight estimation by
the motor system. We found that these motor system weight estimates
reflected the integration of prior expectations with real-time propriocep-
tive information in a Bayesian, statistically optimal fashion that dis-
counted unexpected sensory information. This produces a motor size–
weight illusion that consistently biases weight estimates toward prior
expectations. In contrast, when subjects compared the weights of two
objects, their perceptions defied Bayes’ law, exaggerating the value of
unexpected sensory information. This produces a perceptual size–weight
illusion that biases weight perceptions away from prior expectations. We
term this effect “anti-Bayesian” because the bias is opposite that seen in
Bayesian integration. Our findings suggest that two fundamentally dif-
ferent strategies for the integration of prior expectations with sensory
information coexist in the nervous system for weight estimation.

I N T R O D U C T I O N

Early work on the classic (perceptual) size–weight illusion
(SWI) suggested that this illusion arises from the difference
between anticipated and required motor output for lifting two
objects of the same mass but different sizes (Charpentier 1891;
Müller and Schumann 1889). The argument has traditionally been
that, because people expect larger objects to be heavier (Cross and
Rotkin 1975; Flanagan and Beltzner 2000), more force is gener-
ated when lifting a larger object, resulting in the perception that it
is easier to lift (Davis and Roberts 1976; Müller and Schumann
1889). However, the SWI exists in the absence of motor activa-
tion. When objects of different heights but identical mass and
cross-sectional area are passively placed on subjects’ hands,

which are supported from below, the shorter object feels heavier
(Usnadze 1931). Furthermore, when two objects that elicit the
SWI are alternately lifted, the load forces and grip forces
applied to the objects become accurate after just 4 to 7 lift pairs
(Flanagan and Beltzner 2000; Grandy and Westwood 2006),
although the SWI persists unmitigated for �20 pairs, indicat-
ing that mismatched motor output is not required for the
illusion.
There is accumulating evidence that the size–weight illusion

instead results from a discrepancy between prior expectations and
sensory information about object weight. Similar weight percep-
tion illusions are seen when objects are expected to weigh differ-
ent amounts for reasons other than size. For example, in the
material–weight illusion (Ellis and Lederman 1999; Harshfield
and DeHardt 1970), people perceive cubes that appear to be
made of denser materials such as steel or brass to be lighter
than equal-weight, equal-sized cubes that appear to be made of
less-dense materials such as wood. Similarly, nongolfers find
no difference between the perceived weight of real golf balls
and practice balls modified to have the same mass. However,
experienced golfers consistently perceive the modified, usually
lighter, practice balls to be heavier than the real ones (Ellis and
Lederman 1998). These results suggest that experience-depen-
dent expectations about object weight, based on a variety of
different object features, drive several weight perception illu-
sions including the SWI (Ellis and Lederman 1998; Jones
1986; Koseleff 1957; Ross 1966). Furthermore, when prior
expectations about the relationship between the size and weight
of objects are experimentally altered by repeated lifting of
unusual small–heavy and large–light objects for thousands of
trials over several days, the size–weight illusion reverses
(Flanagan et al. 2008). This suggests that, like the weight
expectations that guide motor actions, perceptual expectations
can also adapt. However, the rate of this adaptation is much
slower, suggesting the maintenance of distinct weight expec-
tations for action and perception.
In the context of the SWI, subjects can combine the expec-

tation that the smaller of two objects will be lighter (Cross and
Rotkin 1975; Flanagan and Beltzner 2000), with unbiased but
imperfect proprioceptive sensory information about the actual
weight of each object when forming weight perceptions. Fil-
tering noisy sensory information through prior expectations
can yield more accurate estimates than when this information
is used alone. Bayes’ theorem (or Bayes’ law) can be used to
determine optimally accurate estimates that minimize errors in
judgment, given noisy sensory measurements and prior expec-
tations, and recent studies have suggested that Bayes’ law
explains several key features of perceptions and motor actions,
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including certain perceptual illusions (Ernst and Banks 2002;
Gregory 2006; Körding and Wolpert 2004; Körding et al.
2004; Norris and Kinoshita 2008; Sato et al. 2007; Stocker and
Simoncelli 2006a; Weiss et al. 2002). Therefore Bayes’ law
may provide a framework for understanding illusory weight
perceptions driven by prior expectations.
However, it has been noted that the perceptual biases char-

acterizing the SWI cannot be explained by Bayes’ law (Ernst
2009; Flanagan et al. 2006), suggesting that weight estimation,
in general, may not be Bayesian. Although previous work has
shown that prior expectations about object weight can be
processed differently for perception and action (Flanagan and
Beltzner 2000), it is unclear whether the mechanisms that
govern how these prior expectations can influence the inter-
pretation of sensory information are similar or different. In
particular, the dorsal and ventral visual streams may process
information separately for actions and perceptions (Goodale
and Milner 1992; Milner and Goodale 1993). However, it is not
known whether these pathways process visually based prior
expectations in fundamentally different ways. Here we contrast
the integration of prior expectations with sensory information
for weight estimation in perception and involuntary motor
action. We show why Bayesian estimation would produce
weight and force estimation biases opposite to those seen in a
variety of perceptual judgments, including the SWI and the
attenuated perception of self-generated tactile sensations and
force (Bays et al. 2005; Shergill et al. 2003; Weiskrantz et al.
1971), but consistent with motor output biases in a novel motor
analog of the SWI.

M E T H O D S

Participants

Forty healthy human subjects (14 male, 26 female; mean age: 21.4
yrs) with no known neurological deficits participated in this study. All
participants gave informed consent and the experimental protocols
were approved by the Harvard University Committee on Human
Subjects Research (IRB F15817-101).

Tasks

Experiment 1: motor analog of the size––weight illusion. In the first
experimental task, subjects were presented with two cubes of 300-g
mass but different sizes (26 and 52 mm). The cubes were covered with
duct tape to make them look and feel like they might be made of the
same material. Two square pieces (1 � 1 cm) of 120 grit sandpaper
were glued to two opposite sides of the cubes, indicating the proper
gripping locations and providing increased friction between the sub-
ject’s fingers and the cubes. Subjects wore a right-handed glove,
instrumented for data collection. On the palm side of the glove, we
mounted two circular platforms made from acrylic (76.2 mm in
diameter) with a 25-N load cell sandwiched between them. The load
cell registered the placement and lifting of cubes on and off the acrylic
platform. The platform ensured that the weight of both cubes was
distributed over the same area to match the proprioceptive response
from each one. On the back side of the glove, we mounted a six-axis
position sensor and a three-axis accelerometer to measure the position
and motion of the subject’s hand in space with a resolution of 38 �m
and 0.1°.
While seated in a chair, each subject placed his/her right elbow on

the table and kept the palm of the gloved right hand horizontal and
facing up. Each subject was then asked to grip a cube between the
thumb and index finger of the left hand and quickly place it on the

platform on the right palm, as shown in Fig. 2A. Subjects maintained
a fixed posture with the cube on their palms for 1–2 s and then quickly
lifted the cube off using the same thumb–index finger grip. Data were
continuously recorded at a sampling frequency of 60 Hz. In experi-
ment 1, 20 subjects performed 50 training lifts of the large cube
followed by 8 “novel” lifts of the small cube, whereas the other 20
subjects performed 50 training lifts of the small cube, followed by 8
novel lifts of the large cube. After a 1- to 2-min break, subjects
performed two additional blocks of lifting trials (training followed by
novel lifts), in which the number of training lifts was reduced from 50
to 25, although the number of novel cube lifts remained at 8.

Experiment 2: anticipatory postural adjustments generated during
a controlled misestimation of weight. In the second experimental task,
subjects were presented with a stack of two identically sized, identi-
cal-looking cubes, built the same way as the large cubes in the first
experiment. We constructed six blocks total, one each of 150, 225,
300, 300, 375, and 450 g mass, and stacked them together to make
three stacks of 600 g mass (150 g/450 g, 225 g/375 g, 300 g/300 g)
that were indistinguishable from each other.
Subjects placed the stack on the palm of their right hands while

maintaining the same fixed arm posture as that in experiment 1 (they
transported the cubes by holding only the bottom one so that the
individual weights could not be easily determined). Subjects then
performed a rapid lift of only the top cube from the stack, as shown
in Fig. 4A. After each lifting trial, subjects returned the top cube to the
stack on their palm and then picked up the stack by holding the bottom
cube and returned it to the table. We then took the stack from them,
placed it behind an opaque wall, and then placed another stack in front
of them. We repeated these lifting trials 100 times (25 � 4 sets) with
five different pair combinations: 150 g/450 g, 225 g/375 g, 300 g/300
g, 375 g/225 g, and 450 g/150 g; 76 lifts were with the “control” pair
(300 g/300 g) and 24 “surprise” lifts, 6 with each of the other four
pairs, randomly interspersed after the 15th trial. The first 15 trials of
the first set were all done with the control pair and served as initial
training.

Experiment 3: replication of the classic size–weight illusion. In the
third experiment we replicated a version of the classic size–weight
illusion with the same objects (cubes) as those in experiment 1. Prior
to this experiment, subjects removed the data collection glove used in
experiments 1 and 2. We used the small cube (26 mm) from experi-
ment 1 and nine large cubes (52 mm), all covered in duct tape to look
and feel as if they were made of the same material. The small cube had
a mass of 300 g and masses of the large cube spanned the range of 200
to 600 g in increments of 50 g. We prepared three sequences of the
large cubes, ordered by their weight: an increasing (I), a decreasing
(D), and a pseudorandom (R). Each sequence contained all nine large
cubes and no cube appeared twice. For every subject a random
arrangement of these three sequences was chosen (e.g., whereas one
subject might get I-D-R, another might get D-I-R, etc.) and this
determined the order in which the large cubes would be presented. In
27 consecutive trials, subjects were presented with the small cube and
a large cube from this arrangement. Subjects were asked whether the
small cube felt heavier after lifting both of them off the table, one at
a time. Subjects who performed experiment 1 with a small “novel”
300-g cube were asked to lift the large cube first and the small one
second before they decided whether the small one felt heavier,
whereas the other subjects (who used a large “novel” 300-g cube)
were asked to lift the small one first and the large one second.

Data analyses

MOTOR DATA. Using the data from the load cell, individual lifting trials
from the data collected in experiments 1 and 2 were aligned to the time
at which the load on the platform decreased by 100 g (about one third of
the linear portion of the unloading force profile; see Fig. 2B). For
experiment 1 we compared vertical motion of the right hand during the
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first novel cube lift to the average vertical motion during the previous 10
training cube lifts. We focused our analysis on the first novel cube lift for
each subject to avoid the effects of motor adaptation. Significance was
computed using paired t-tests. Results from the surprise lifts in experi-
ment 2 were used to estimate the sensitivity of the relationship between
weight misestimation and hand displacement using a simple linear re-
gression as shown in Fig. 4C (see following text). We then used this
sensitivity estimate to determine the weight estimation bias associated
with the hand displacements obtained in experiment 1 for each subject.
The mean across subjects of these weight estimates is plotted in Fig. 4D
with its associated variance. The measurement-variance apropos to
Bayesian estimation (the performance noise experienced by a particular
subject) can generally be estimated by finding the within-subject, trial-
to-trial variability and averaging this quantity across subjects. However,
since we based our analysis (and the mean estimate of the weight bias in
the motor task) on the first novel lift, the within-subject variability was
not available. We did, however, have an estimate of each subject’s
trial-to-trial variability for the baseline lifts, which one could reasonably
expect to be relatively similar to the novel cube lift trial-to-trial variabil-
ity. In an attempt to further improve the accuracy of our estimate of the
associated variance, we scaled it by the ratio of overall variance in the
novel cube lift (across subjects) to the overall variance in a single cube
baseline lift (across subjects). Note, however, that this scaling had only a
modest effect since this ratio was 1.16. This estimate removes the effect
of subject-to-subject variability, but still includes the effects of motor
output noise and experimental measurement noise and thus probably
slightly overestimates the average variance associated with weight esti-
mation in our sample of subjects.
To estimate the sensitivity of the relationship between weight

misestimation and hand displacement in experiment 2, we averaged
the vertical hand profiles for each stack configuration—150 g/450 g,
225 g/375g, 300 g/300 g, 375 g/225 g, and 450 g/150 g after excluding
the 15 training trials—and performed a simple linear regression.

PERCEPTUAL DATA FROM EXPERIMENT 3. For each individual large
cube, we calculated the probability that each subject would perceive it to
be heavier than the small 300-g cube. We then averaged those probabil-
ities across subjects and fit this psychometric data with the standard
logistic function shown in Eq. 1 (R2 � 99.6%). The dark purple curve in
Fig. 1C was obtained by differentiating this logistic function, fitting a
Gaussian pdf to it (R2 � 94.6%) and dividing the associated variance by
a factor of 2. Since the variance in these data comes from independent
estimates of the weights of the small and the large cube on each trial, we
attributed half of the total variance to the weight estimate for the small
cube

S �
1

1 � e���x���/�� (1)

R E S U L T S A N D D I S C U S S I O N

A Bayesian perspective on the size–weight illusion

According to Bayes’ law (Eq. 2), the likelihood associated
with an object’s true weight (TW) can be expressed as a
normalized product of the prior expectation (based on visual
and/or haptic information about the object) and proprioceptive
sensory input when holding the object:

P�TW�Sensation�
Ç

Net estimate
(Posterior)

�
P�Sensation�TW�

Noisy but unbiased sensory input

È
� P(TW)

Prior expectation

È

P(Sensation)
Ç
Normalization Factor

(2)

To help understand how Bayesian integration applies to the
SWI, Bayes’ law can be rewritten to explicitly include the

effect of object size. We do this by parsing the overall “sen-
sation” of the true weight referenced in Eq. 2 into two com-
ponents: proprioceptive sensation (PS) of object weight, ac-
quired from holding the object, and the visual sensation of
object size (Size), acquired from viewing the object (Eq. 3)

P�TW�PS,Size�
Ç

Net estimate
(Posterior)

�
P(PS�TW,Size)

Noisy sensory input

È
� P(TW,Size)

Prior expectation

È

P(PS,Size)
Ç
Normalization Factor

(3)

For any given object size, Eq. 3 can be simplified by
applying the definition of conditional probability and noting
that raw proprioceptive sensation of weight should not
depend on object size

P�TW�PS,Size�
Ç

Net estimate
(Posterior)

�
P(PS�TW,Size)

Noisy sensory input

È
� P(TW�Size) �P(Size)

Prior expectation

È

P(PS�Size) �P(Size)
Ç
Normalization Factor

�
P(PS�TW)

Noisy sensory input

È
� P(TW�Size)

Prior expectation

È

P(PS)
Ç
Normalization Factor

(4)

In Eqs. 2–4, P(x) refers to the unconditional probability of
an event x occurring, whereas P(x � A) signifies the condi-
tional probability of an event x occurring given the occur-
rence of an event A. Similarly, P(x � A, B) refers to the
probability of event x occurring given the simultaneous
occurrence of both events A and B.
In the SWI, direct sensory input from proprioceptive force

sensors in the arm is unbiased but noisy. We define sK to be the
level of this sensory input on trial k and we presume 1) that the
distribution of sK can be approximated by a Gaussian proba-
bility density function (pdf), N(�s, �s

2); and 2) that the prior
expectation of the object weight has a pdf that can be approx-
imated by N(�E, �E

2). For a small unexpectedly dense object,
the distribution of effective sensory input should be centered
around its true weight, whereas the distribution of expectations
should be biased toward underestimating the true weight of the
object (Cross and Rotkin 1975; Flanagan and Beltzner 2000),
as shown in red in Fig. 1A.
Application of Bayes’ law to a single lift gives the probability

distribution for the true weight x, shown in Eq. 5. This distribution
is the normalized product of N(�E, �E

2) and N(sK, �E
2) and will be

Gaussian,N(�X, �X
2). Note that the peak of this distribution (which

in this Gaussian case is the same as its mean) is an optimal
estimate, x̂, of the true weight. As shown in Eq. 6, x̂ is a weighted
average of �E and sK; therefore based on Bayes’ law, it must fall
between �E and sK within the light blue colored Bayesian region
in Fig. 1A. If independent Bayesian estimates of the true weight
are gathered from different subjects, the mean of these estimates
would be a weighted average of �E and �S, as shown in Eq. 7

p�x�sK� � N��x,�x
2� �

N��E,�E
2� � N�sK,�S

2�

Normalization Factor
(5)
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x̂ � �x � E�x�sK� � � �S
2

�E
2 � �S

2��E � � �E
2

�E
2 � �S

2� sK (6)

	x̂
 � 	�x
 � � �S
2

�E
2 � �S

2��E � � �E
2

�E
2 � �S

2��S (7)

Bayesian estimation viewed as a discount on
unexpected information

If we define 	 as the unexpected part of the sensory input
averaged across samples—the difference between expected
and actual sensations (Eq. 8)—it becomes apparent that the

average Bayes-optimal weight estimate is simply the sum of
the expected weight and a fraction of the unexpected sensory
input, as shown in Eq. 9. Note that this fraction (K) is a gain on
unexpected sensory input (	), which must be between zero and
one, indicating that Bayes-optimal estimates will always dis-
count unexpected information. Note that this gain (K) is anal-
ogous to the gain of a Kalman filter. A gain greater than one
would correspond to an exaggeration (rather than a discount-
ing) of unexpected information and would thus reflect an
“anti-Bayesian” estimate

	 � �S 
 �E N �S � �E � 	 (8)
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FIG. 1. The size–weight illusion (SWI) and Bayesian estimation. A: example of optimal estimation for the weight of a small, heavy object. The red
curve represents the likelihood of the prior expectation of weight from seeing the object (�E is the mean of this likelihood), the blue Gaussian represents
the distribution of noisy sensory information from feeling it (centered around sK), and the light purple Gaussian is the posterior probability density function
(pdf) for the weight, given the prior expectation and sensory information. The mean of this posterior pdf (�X) corresponds to the optimal (Bayesian) weight
estimate. The shaded light blue region shows the range of values for which an estimate could be consistent with Bayes’ law depending on the variances
associated with prior expectations and sensory measurements. B: replication of the SWI. Red dots indicate the probability that a large cube of each mass
is perceived to be heavier than a 300-g small cube. Error bars indicate SE. The dark purple sigmoid is a fit through the data. The black curve is a shift
of the dark purple sigmoid to a point with no illusion. C: results from the SWI experiment presented as pdfs. The blue Gaussian curve represents the
sensory estimates of the mass of the small object; the red Gaussian signifies a hypothetical prior expectation of this mass. The light blue area of the figure
indicates the region in which the 2 sources of information would be integrated according to Bayes’ law, given that the prior expectation is known to
be �300 g. The pink area is the region where the integration would be anti-Bayesian. The dark purple Gaussian-like curve is the derivative of the dark
purple sigmoid from B.
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	x̂
 � � �S
2

�E
2 � �S

2��E � � �E
2

�E
2 � �S

2� ��E � 	�

� �E � � �E
2

�E
2 � �S

2�	 � �E � K	 (9)

Perceptual illusion

We designed experiments to quantify both perceptual and
motor estimates of weight in the context of the same SWI, to
understand whether the neural systems underlying these esti-
mates integrate prior expectations and unexpected sensory
information in similar (or different) ways. Although the per-
ceptual effects of the SWI have been demonstrated in a wide
variety of circumstances (Jones 1986; Koseleff 1957), we
sought to evaluate the magnitude of perceptual and motor
biases associated with the SWI using the same objects. We
constructed a set of 14 large cubes (52-mm side) with masses
between 200 and 600 g that we tested against a single small
cube (26-mm side) with a 300-g mass. Subjects were presented
with pairs of cubes (the small one and a randomly chosen large
one) and were asked to lift the two cubes one at a time and
indicate which felt heavier. The results from this experiment
were used to generate the dark purple psychometric curve
displayed in Fig. 1B. This curve shows the probability that the
small 300-g cube felt lighter than each large cube. These data
show that, on average, subjects perceived the small 300-g cube
to feel as heavy as a large cube of 440 (47% overestimate) �
13 g (95% confidence intervals). Differentiating this psycho-
metric curve gives an estimate of the pdf of the perceived
weight of the small cube, shown in Fig. 1C. Since the differ-
ence between the perceived weight and the expected weight is
greater than the difference between the raw sensory informa-
tion and the expected weight, the gain on unexpected informa-
tion is greater than one. This means that the perceived weight
of the small cube exaggerates the unexpected component of the
sensed weight rather than discounting it, indicating that the
SWI generates an anti-Bayesian weight estimate.
Interestingly, the SWI is not the only percept that appears to

display anti-Bayesian processing of unexpected information. It
is well known that predictable self-generated sensations are
substantially attenuated compared with sensations arising from
unpredictable external stimuli (Bays et al. 2005; Blakemore et
al. 2000; Sperry 1950; Weiskrantz et al. 1971). For example,
when tapping one finger against another, subjects perceive the
taps as weaker than unpredictable externally generated taps of
the same force magnitude (Bays et al. 2005). This same effect
explains why one cannot tickle oneself (Blakemore et al. 2000;
Weiskrantz et al. 1971) and leads to the escalation of force
when subjects attempt to match blows with one another
(Shergill et al. 2003). It is believed that an attenuation in the
sensation of predictable, self-generated forces leads to an
increase in the salience of sensations from external stimuli
(Bays et al. 2005; Blakemore et al. 2000; Sperry 1950).
However, this attenuated perception of self-generated, predict-
able sensations relative to externally generated, unpredictable
sensations is fully equivalent to the exaggeration of unex-
pected sensation relative to expected sensation. When a fixed-
magnitude external stimulus is applied to a stationary target,
the raw sensory information generated by it is the same
regardless of whether it is expected. This proprioceptive infor-

mation is primarily from Golgi tendon organs and, as long as
the targeted sensory area remains stationary (i.e., the lengths of
its muscle fibers remain unchanged), there should be little
muscle spindle afferent activity.
If this stimulus is self-generated, the expected sensation

should be accurate, especially after repeated exposure. In
contrast, if the same stimulus is completely unexpected (i.e.,
the expected sensation is zero) then the unexpected stimulus
will be perceived to be stronger than the expected one, only if
the unexpected sensation is exaggerated. As such, it also
amounts to an anti-Bayesian estimation, analogous to that
displayed in the SWI, because Bayesian estimation always
discounts unexpected information by some amount. Therefore
the observations about the perceptions of force, pressure, and
weight based on proprioceptive and tactile sensory information
represent anti-Bayesian integration of sensory information with
prior expectations, which exaggerates unexpected sensory in-
formation in a variety of circumstances.
However, over the past decade several studies have shown

that Bayesian-like processing can underlie both sensory per-
cepts and motor actions when prior expectations are combined
with sensory inputs and when different sensory inputs are
combined with one another (Ernst and Banks 2002; Körding
and Wolpert 2004; Körding et al. 2004; Stocker and Simoncelli
2006a; Weiss et al. 2002; Wolpert et al. 1995) and several
perceptual illusions have been explained on the basis of Bayes’
law (Gregory 2006; Sato et al. 2007; Stocker and Simoncelli
2006a; Weiss et al. 2002). For example, visual uncertainty
biases the perception of speed in a manner consistent with
Bayes’ law. The prior expectation that most objects are sta-
tionary causes subjects to perceive moving objects in a low-
visibility situation (characterized by highly uncertain sensory
information) as slower than the same objects in a high-visibil-
ity situation (Weiss et al. 2002). Furthermore, it has been
shown that both visual and haptic sensory data are combined in
a statistically optimal fashion that modulates the influence of
each in a Bayesian manner when perceiving the length of an
object (Ernst and Banks 2002). In the motor system, Bayes’
law explains how the magnitudes of responses to visual (Körd-
ing and Wolpert 2004) and force pulse (Körding et al. 2004)
perturbations are influenced by prior expectations, suggesting
that the motor system’s estimates of distance and force are
formed by Bayesian integration.

Motor illusion

Although the perception of weight and force is apparently
anti-Bayesian, the motor system’s estimate of force has been
shown to be Bayesian on a task that does not involve the SWI
(Körding et al. 2004). Therefore we sought to determine
whether, in the context of this illusion, the motor system is also
fooled by the SWI (anti-Bayesian), unbiased, or Bayesian
when estimating weight. To do this, we designed an involun-
tary motor task sensitive to weight estimation. We studied the
generation of anticipatory postural adjustments (APAs) based
on the motor system’s weight estimate. APAs, which are
involuntary muscle actions preceding a voluntary movement,
have been shown to assist in minimizing postural changes
when subjects raise their arms (Bouisset and Zattara 1981),
catch a falling object (Shiratori and Latash 2001), or pull on a
fixed handle (Brown and Frank 1987; Cordo and Nashner
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1982) by activating muscles not directly involved with the
performed action. The magnitude of APAs has been shown to
correlate with the size of the expected perturbation (Horak et
al. 1989), indicating that they are sensitive to weight estimation
(Diedrichsen et al. 2007; Horak et al. 1989; Wing et al. 1997).
Furthermore, APAs cannot be voluntarily modulated or initi-

ated (Diedrichsen et al. 2003; Dufossae et al. 1985; Lum et al.
1992), making them unlikely to be directly influenced by
perceptual estimates.
A waiter in a restaurant relies on APAs to keep a tray full of

drinks steady if he/she holds the tray with one hand while
removing a glass with the other. When lifting a glass from the

Diagram of the motor SWI experiment
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FIG. 2. Motor analog of the SWI. A: diagram of the experiment. First, the subject maintains a fixed posture with his right hand while supporting a single cube
on his palm. Then he reaches from the top and grabs the cube with his left hand, quickly lifting it up. Without an appropriate anticipatory postural adjustment
(APA), the supporting hand would move far up after the lift. Even with a normal compensatory APA, the palm of the supporting hand moves up some amount
after the cube has been lifted. An accurate estimate of the weight being unloaded helps reduce hand displacement. B: force profiles during unloading. The dashed
lines are the average profiles during the last 10 of the 50 baseline lifts. Solid lines show the corresponding profile during the first novel cube lift. Purple lines
are the profiles for the large 300-g cube; orange lines are the profiles for the small 300-g cube. All profiles are aligned to the point in time (zero) when the load
is reduced to 200 g. The shaded gray regions represent the 10–90% and 5–95% of the fall time. C and E: position profiles of the supporting hand during the
motor analog of the SWI experiment. Line styles and colors are consistent with B. Error bars represent SE across subjects. Bayesian (light blue) and anti-Bayesian
(pink) regions are consistent with Fig. 1C. D and F: displacement at 2 instances: 50 and 83 ms after the lift onset.
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tray, the weight of the tray is reduced by the weight of the glass;
consequently, the force used to support the tray must be instantly
reduced by this weight if the tray is to be held steady, to prevent
the remaining drinks from spilling. If the waiter fails to compen-
sate for the weight change of the tray, it will shift upward. In fact,
any mismatch between the required and actual supporting forces
would cause a corresponding acceleration of the tray. If the waiter
underestimates the weight of the glass he/she picks up—effec-
tively overestimating the weight of the tray remaining in his/her
hand—the supporting force the waiter produces after the lift will
be greater than that required to support the tray and the tray will
be pushed up. If the waiter overestimates the weight of the glass,
the tray will move down.
We designed a motor analog of the size–weight illusion

based on a version of this waiter task, diagrammed in Fig. 2A.
We asked subjects to maintain a fixed arm posture, elbow
placed on the table, while supporting the weight of an object
placed on the palm of their right hand about 6 in. off the table.
For this experiment we used two cubes of 300-g mass: a small
one (26-mm side) and a large one (52-mm side). In one group,
20 subjects were first given the large 300-g cube and asked to
lift it with their left hand and place it on the palm of their right
hand. They were instructed to hold their right arms steady
while rapidly lifting the cube using their left hands. After each
lift, subjects placed the large cube back on the palm of their
right hand. Each subject performed 50 rapid lifting trials
(training lifts) of this large 300-g cube, while we recorded the
vertical motion of their right hands associated with the left-
hand lifts. Subsequently, subjects were given a small 300-g
cube, which all subjects judged to be heavier, and were asked
to repeat the same lifting task with it 8 times (novel lifts). The
cubes were placed on the same circular platform, resting on the
palm of the right hand, and were fitted with identical grip
surfaces to match the proprioceptive information associated
with each one.
Another group of 20 subjects performed the same task in

reversed order: 50 training lifts with a small cube followed by
8 lifts of a novel large cube. The results from these experiments
are shown in Fig. 2, C and E. Here the dashed traces show the
vertical position profile of the supporting (right) hand during

the last 10 of the 50 baseline cube lifts, whereas the solid traces
show the corresponding position profiles during the first lift of
each novel cube. Line colors indicate cube size. Both traces
represent the mean across 20 subjects, with error bars indicat-
ing SE. We found a 35% increase in postlift displacement for
the supporting hand when a novel small cube was lifted, as
shown in Fig. 2, C and D (2.7 vs. 2.0 mm, P � 0.01, 50 ms
after the lift onset; see Fig. 2D). In contrast, the first novel large
cube lift showed a 32% decrease in postlift displacement for
the supporting hand compared with baseline, as shown in Fig.
2, E and F (1.5 vs. 2.2 mm, P � 0.01, 50 ms after the lift onset;
see Fig. 2F). The increased vertical displacement observed in
the novel small cube lifts corresponds to an underestimation of
its weight, whereas the decreased displacement observed in the
novel large cube lifts corresponds to an overestimation of its
weight. Both of these results are consistent with Bayes’ law
and inconsistent with the anti-Bayesian perceptual weight es-
timate seen in the classic SWI.

Anticipatory behavior of the motor system

Since we are interested in the anticipatory (feedforward)
behavior of the motor system, we studied lifting profiles as
close to the lift onset as possible, to avoid contamination of our
findings by feedback-driven responses. However, we wanted to
examine motion profiles after the load had been fully removed
from the supporting hand. Therefore we instructed subjects to
lift as rapidly as possible, to minimize the time between
lift-force onset and liftoff for the cube. This resulted in the
completion of 95% of all the lifts in our task by 50 ms after
the lift-force onset (see Fig. 2B), and so we decided to analyze
our data at the 50- and 83-ms time points. Because error
correction in response to proprioceptive perturbations associ-
ated with arm movements typically lags velocity errors by�90
ms (Cordo 1990), hand position measured 50–83 ms after lift
onset is likely to reflect anticipatory feedforward control of the
supporting hand rather than feedback responses to hand dis-
placements. Although electromyographic (EMG) signals from
short-latency tendon-jerk reflexes can have latencies as short as
15–20 ms (Jones 1986; Marsden et al. 1976) for human biceps
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FIG. 3. Rapid adaptation in the motor analog of the SWI.
Whereas the data in Fig. 2 show the biases in motor output
displayed in the very first novel cube lift, here we show how these
biases change within a block of 8 repeated lifts of the novel cube
and across 3 such blocks of novel cube lifts. Differences in
position profiles of the supporting hand between the novel and
baseline lifts 50 ms after the lift onset are shown. Each point
represents an average difference across subjects and error bars
represent SE. For each subject we computed the difference be-
tween a particular “novel” lift and the mean of the last 10 baseline
trials. The orange points (A and B) are the differences between
small cube novel and large cube baseline lifts and the purple points
(C and D) are the differences between large cube novel and small
cube baseline lifts. A and C: the data for the 8 novel cube lifts in
the first block. The fit is a decaying exponential with a time
constant of just 2 trials [r � 0.65, F(2,13) � 4.65, P � 0.03].
These data could also be fitted by a line with a slope of �0.056
mm/trial [r � 0.55, F(1,14) � 5.99, P � 0.03]. B and D: the first
novel cube lift in each of the 3 blocks. The data show a decay at
a rate of �0.35 mm/block [r � 0.92, F(1,4) � 21.7, P � 0.01].

1524 J. B. BRAYANOV AND M. A. SMITH

J Neurophysiol • VOL 103 • MARCH 2010 • www.jn.org



muscle, noticeable changes in position due to these EMG
changes can be further delayed by 60–70 ms (Rothwell et al.
1980). However, these short-latency reflexes generally have
very small magnitudes, unless high-acceleration perturbations
are used, and these responses do not vary across task condi-
tions (Marsden et al. 1976). In contrast, long-latency responses
are larger in magnitude and can be modulated by task-specific
variables (Rothwell et al. 1980). However, EMG latencies
associated with these responses display latencies of 50–60 ms
(Marsden et al. 1976; Rothwell et al. 1980), corresponding to
position change latencies of �110 ms (Rothwell et al. 1980),
making it highly unlikely for long-latency reflexes to affect our
results 50 or 83 ms after the movement onset. Furthermore, if
we repeat the same data analysis at 33 ms after force onset

(before liftoff in most trials), we still see significant separation
between the baseline and novel profiles in both subject groups
(P � 0.05 at 33 ms in both cases).
Another possible explanation for the difference in profiles

between the baseline and novel cube lifts might be the exis-
tence of increased arm stiffness associated with object novelty.
Increased arm stiffness would reduce motor errors in the face
of uncertainty about object weight in novel cube lifts. How-
ever, increased arm stiffness would predict reduced displace-
ments compared with baseline in both types of novel cube lifts,
whereas our data show decreased displacement for the large
novel cube but increased displacement for the small novel
cube, consistent with a discounting of unexpected sensory
information when the motor action is planned. Moreover, these

Diagram of the calibration for the motor SWI experiment
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opposite displacements are nearly symmetric (0.7 mm in both
cases), suggesting that the effects of any stiffness changes are
much smaller than the effects associated with changes in
anticipatory motor output that reflect the discounting of unex-
pected sensory information.
Note that in the former data analysis, we used only the first

lifting trial of the novel object to avoid any effects of motor
adaptation. In fact, subjects performed 8 consecutive lifting
trials with each novel object after the initial 50-trial training
period with the familiar object. Following this 8-trial block,
subjects were administered two 25-trial retraining periods with
the familiar object, each followed by an additional 8-trial novel
cube lifting block. We show that the motor adaptation over the
course of the first 8 novel cube lifts can be approximated by a
decaying exponential having a time constant of 2 trials [r �
0.65, F(2,13) � 4.65, P � 0.03; Fig. 3, A and C] or a line with
a slope of �0.056 mm/trial [r � 0.55, F(1,14) � 5.99, P �
0.03]. Furthermore, when we compare the first novel lifts from
each of the 3 consecutive lifting blocks (those lifts are sepa-
rated by 25 lifting trials with the baseline object and 7 trials
with the novel object) as shown in Fig. 3, B and D, we see that
the novelty effect is reduced to practically 0 by the end of the
experiment at a rate of �0.35 mm/block [r � 0.92, F(1,4) �
21.7, P � 0.01]. These results indicate rapid adaptation of the
motor system’s prior expectation about object weight both
within and across blocks, despite the persistence of a percep-
tual bias caused by the size–weight illusion, consistent with
previous work (Flanagan and Beltzner 2000; Grandy and
Westwood 2006).

Quantifying weight estimates in the motor illusion

To assess the amount of weight estimation bias in the motor
system responsible for the changes in hand displacement we
observed, we designed a control experiment in which we asked
each subject to place a stack of two identically sized, identical-
looking cubes on the palm of his/her right hand while main-
taining the same fixed arm posture as that in the previous
experiment (subjects transported the cubes by holding only the
bottom one so that the individual weights could not be easily
determined). Subjects then performed a rapid lift of only the
top cube from the stack, as shown in Fig. 4A. We repeated
these trials 100 times with five pairs of identical-looking
objects, all with a total mass of 600 g: 150–450, 225–375,
300–300, 375–225, and 450–150; 76 of 100 lifts were with the
“control” pair (300–300) and 24 “surprise” lifts were randomly
interspersed, 6 with each of the other pairs. We used the results
from these surprise lifts to determine the relationship between
the amount of weight estimation bias and postlift displacement
of the right hand. We found a simple linear relationship
between the amount of weight misestimation and the postlift
displacement of the right hand (R2 � 98.6%, P � 0.001) at 50
ms postlift, which we used as a calibration function. This
calibration reveals that the 0.7-mm increase in displacement
we found in the motor analog of the SWI experiments at 50 ms
postlift corresponds to a 65-g (22%) underestimation, as shown
in Fig. 4C, indicating that the motor system estimates the small
cube mass to be 235 rather than 300 g on the first novel-object
lift.

Bayesian versus anti-Bayesian integration

If the APAs in our task were scaled solely based on the
prior expectation of the weight of the small cube, we should
see an APA corresponding to an 87.5% underestimate, since
the volume of the small cube is one eighth that of the large
one. Alternatively, if these APAs were based on proprio-
ceptive sensory input alone, there should be no difference in
the lifting profiles for the two cubes. The 22% underesti-
mation we see for the small cube is consistent with a gain on
unexpected information of 0.75 as defined in Eq. 9, corre-
sponding to a 25% discount on unexpected sensory infor-
mation. Although our results suggest that the gain on unex-
pected information is �1.0, consistent with Bayesian esti-
mation, we lack the data necessary to show that this gain
corresponds to the ratio of variances shown in Eq. 9 because
the certainty of the prior is difficult to estimate. Thus we
demonstrate opposite biases for the motor and perceptual
weight estimates and show that perceptual biases are oppo-
sitely directed from the biases that would be generated by
Bayesian integration. However, although the direction of the
motor illusion is consistent with Bayesian integration, we
cannot assess whether its magnitude matches that predicted
by Bayes’ law. Overall, our findings indicate that whereas
the perceptual system estimates the small cube to be 47% heavier
than a comparable large cube, the motor system estimates this
small cube to be 22% lighter, as shown in Fig. 4D.
These results suggest that the motor system combines

prior expectation and real-time sensory information to gen-
erate a Bayesian-like weight estimate, discounting the value
of unexpected sensory information, whereas the perceptual
system combines these information sources in an anti-
Bayesian manner, exaggerating the value of unexpected
sensory information. This gives rise to oppositely biased
weight estimates for perception and action. We believe that
this is the first demonstration of opposite illusions (i.e.,
opposite biases) for perception and action in the context of
the same task. These results suggest that the nervous system
uses two entirely different mechanisms to integrate prior
expectations with current sensory information about object
weight.

Different priors for action and perception

Previous studies of lifting dynamics during the SWI have
suggested that the motor system and the perceptual system may
form prior expectations independently (Flanagan and Beltzner
2000; Grandy and Westwood 2006). Because these studies
focused on forces applied to objects suddenly lifted from a
table top, direct sensory information was not available during
the planning of these lifts and thus could not be integrated with
prior expectations. Therefore the initial pattern of grip force
applied when a person lifts an object from a table top reflects
the motor system’s expectation of that object’s weight, rather
than the integration of sensory information about object weight
(Flanagan et al. 2003). Studies of initial grip force show that
the motor system adapts this expectation about object weight in
just three to five trials in the context of the SWI (Flanagan and
Beltzner 2000; Grandy and Westwood 2006), whereas the
perceptual system requires hundreds or thousands of trials to
adapt its expectations (Flanagan et al. 2008). The striking
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difference between adaptation rates for these expectations
suggests that the neural bases for the weight expectations
levied by the motor system and the perceptual system are
indeed separate. Thus these studies provide clear evidence for
the maintenance of separate expectations of object weight for
perception and action; however, they do not provide an oppor-
tunity to assess how prior expectations are combined with
direct sensory information when both are available. In the
current work, we studied how the nervous system processes the
integration of prior expectations and sensory information for
action and perception and found oppositely biased weight
estimates for perception and action, reflecting divergent mech-
anisms for the processing of unexpected information.

Perception versus action in the CNS

The idea that the nervous system may process sensory
information differently for perceptual and motor tasks is not
new. For example, visual information is processed in two
pathways: the dorsal and ventral streams (Mishkin and Unger-
leider 1982; Ungerleider and Mishkin 1982). It has been
hypothesized that the dorsal stream primarily carries spatial
information for action and the ventral stream primarily carries
information about object identity for perception (Goodale and
Milner 1992; Milner and Goodale 1993). However, although
there is clear physiologic evidence for separate streams in the
neural processing of visual information, the evidence that a
particular visual quality, such as the size of an object, is
processed differently for perception and action is still highly
controversial. (de Grave et al. 2005; Franz 2001; Smeets and
Brenner 2006). Much of this controversy stems from a series of
studies (Aglioti et al. 1995; Haffenden et al. 2001) that contend
that the effects of visual illusions on the perception of object
size do not carry over to motor actions. However, the data from
these studies and several others (de Grave et al. 2005; Franz
2001) show that motor actions can also be substantially af-
fected by perceptual illusions, often to similar extents, leading
several authors (de Grave et al. 2005; Franz 2001; Smeets and
Brenner 2006) to suggest that these visual illusions have
similar effects on perception and action. In addition, several
aspects of the methodology used in these studies have been
called into question, in particular the specificity of the mea-
sures used to assess the effect of the illusion on perception and
action (Franz 2001; Smeets and Brenner 2006). For example,
grip aperture has been widely used to assess the effects of
visual size illusions on action (Aglioti et al. 1995; Franz 2001;
Haffenden et al. 2001). However, it has been shown that grip
aperture is planned based on the position of each grasp point
rather that the distance between them (Brenner and Smeets
1996; Jackson and Shaw 2000; Smeets and Brenner 2008,
1999). Because visual size illusions generally have little effect
on the perceived position of individual points within the
illusory figure, the finding that grip aperture is somewhat
resistant to a size illusion may reflect a dichotomy between the
processing of visual information for size and position, rather
than between perception and action (Brenner and Smeets 1996;
Jackson and Shaw 2000; Smeets and Brenner 2008).

Information streams for action

Anticipatory postural adjustments, which are believed to be
resistant to voluntary modulation (Diedrichsen et al. 2003;

Dufossae et al. 1985; Lum et al. 1992), are modulated by the
primary motor cortex (M1) (Chouinard et al. 2005; Gahery and
Nieoullon 1978; Massion 1992), the cerebellum (Diedrichsen
et al. 2005; Massion 1992; Rabe et al. 2009; Rispal-Padel et al.
1982), the supplementary motor area (SMA) (Massion 1992;
Sakreida et al. 2005), and the dorsal premotor area (PMd)
(Byblow et al. 2007; Chouinard et al. 2005; Massion 1992;
Sakreida et al. 2005). Transcranial magnetic stimulation (TMS)
of M1 disrupts the trial-to-trial adaptation of APAs, whereas
the same stimulation applied over PMd disrupts the ability to
use visual cues to form prior expectations about object weight
(Chouinard et al. 2005). Interestingly, TMS stimulation over
PMd has been shown to enhance the ability of motion of one
limb to facilitate activation of another limb, which is required
for APA formation, whereas ventral premotor area (PMv)
stimulation does not (Byblow et al. 2007). Patients with cere-
bellar damage can produce appropriate APAs in common tasks
(Diedrichsen et al. 2005; Massion 1992); however, degenera-
tion of the cerebellum, which is strongly connected to struc-
tures in the dorsal visual stream, interferes with the formation
of novel APAs and the adaptation of preexisting ones
(Diedrichsen et al. 2005; Horak and Diener 1994) but not the
adaptation of grip forces (Rabe et al. 2009).
These findings suggest a dissociation between the control of

APAs and grasping. Two areas of premotor cortex, PMd and
PMv, which receive largely distinct inputs, may mediate this
dissociation. The motor commands associated with APAs may
be primarily driven by sensory input from the dorsal stream,
whereas sensory input from the ventral visual stream may be
most important for the control of grasping. Correspondingly,
the inputs to PMd are from structures generally associated with
the dorsal stream of visual processing (Hoshi and Tanji 2007;
Kaas 2004; Rizzolatti and Luppino 2001), whereas PMv is
substantially connected to ventral stream structures (Lu et al.
1994; Rizzolatti and Luppino 2001; Webster et al. 1994). In
general, PMv is believed to exert more control over distal
movements, such as the shaping of fingers during precision
grip (Davare et al. 2006; Fogassi et al. 2001; Hoshi and Tanji
2007), whereas PMd is closely associated with movement of
more proximal joints including the shoulder and the elbow
(Cisek et al. 2003; Davare et al. 2006; Hoshi and Tanji 2006),
which are generally associated with APAs. Correspondingly,
PMv and PMd activities are specifically activated by biological
motion associated with proximal and distal joints, respectively
(Sakreida et al. 2005). This is in line with previous ideas about
the control of the fingers during grasping (Hoshi and Tanji
2007; Rizzolatti and Luppino 2001), including studies that
have shown that PMd-sparing inactivation of PMv knocks out
grasping movements while leaving reaching movements intact
(Davare et al. 2006; Fogassi et al. 2001).
These findings are compatible with the idea that PMd is

more involved with complex sensorimotor integration like that
involved in the formation of APAs, whereas PMv supports the
coding of actions in a way that is more directly based on
sensory information about object properties (Hoshi and Tanji
2007; Rizzolatti and Luppino 2001), such as the control of
grasp aperture. The idea that ventral stream information feeds
PMv, which controls grasp, may explain why previous work
focused on grasp aperture has generally found somewhat in-
complete dissociations between perception and action (Aglioti
et al. 1995; Haffenden et al. 2001), and were often difficult to
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reproduce (de Grave et al. 2005; Franz 2001), whereas the
current study, which focused on the control of arm posture,
demonstrates diametrically opposed illusions for perception
and action.
A recent imaging study (Chouinard et al. 2009) supports the

idea of a close relationship between the control of grasping
actions by PMv and the illusory perception of weight. The
authors found no changes in neural activity in PMd, M1, or
cerebellum that correlated with the illusory perception of
weight while gripping and lifting an object. Instead, the only
illusion-related activity observed was registered in an area of
PMv, which displayed density-related, but not size-related,
activity. Combined with the idea that PMv activity controls
grasping behavior when reaching for objects (Hoshi and Tanji
2007; Rizzolatti and Luppino 2001), whereas PMd activity
correlates with the mismatch between expected and actual grip
forces (Schmitz et al. 2005), these findings suggest both a close
connection between the control of grasp and the (illusory)
perception of weight and also a dissociation between the
production of force and the perception of weight.

Rapid adaptation of the motor system can obscure
illusory effects

A key issue for the identification for motor illusions is the
effect of motor adaptation. If feedback about motor perfor-
mance is available, errors that occur on one trial can be used to
correct future actions. Because the error-dependent adaptation
of motor expectations can be exceedingly rapid, motor output
can go from clearly biased to nearly unbiased in just 3–5 trials
(Chang et al. 2008; Flanagan and Beltzner 2000; Grandy and
Westwood 2006). Therefore studies that average the results of
many (5–18) trials (Aglioti et al. 1995; Chang et al. 2008;
Haffenden et al. 2001) may fail to detect motor illusions, even
if they are initially present. For this reason we focused on the
first instance in which subjects interacted with a novel cube
(irrespective of whether it was the small or large one) to
minimize the possible effects of motor adaptation. This al-
lowed us to show that the initial weight estimate of the motor
system is not only immune to the perceptual illusion, but is
instead biased in the opposite direction to the perceptual
estimate. Examination of the data from subsequent lifts in our
study reveals that errors associated with the motor illusion we
demonstrate are rapidly attenuated over the course of just 2–4
trials (see Fig. 3), consistent with previous work on motor
adaptation (Krakauer 2009; Krakauer et al. 2000; Scheidt et al.
2000, 2001; Smith et al. 2006; Thoroughman and Shadmehr
2000).
In a recent study, the grip force and load force profiles

associated with using one hand to lift objects from the other
showed that the lifting hand produced more appropriate motor
output when lifting an object from the other hand than that
from a table top (Chang et al. 2008), indicating that sensory
information from one hand can be used to modulate the actions
of the other. In both the table-top and bimanual conditions,
rapid motor adaptation led to the application of appropriate lift
and grip forces after just a few trials. However, examination of
the force profiles from the initial trial on which an object was
lifted from the other hand reveals two interesting features.
First, the required grip force is overestimated for both objects
compared with subsequent trials, although the load force is not;

and second, both lift and grip forces were generally greater for
the large object than for the small one. Although the first of
these effects was not specifically analyzed and the second was
not statistically significant (P  0.1 for all relevant statistical
tests), the first suggests that grip force but not load force is
substantially modulated not only by the expected weight of an
object but also by the uncertainty about this weight and the
second would be predicted by Bayesian integration, consistent
with our current findings.

Opposite illusions versus opposite behavior

A few previous studies have documented oppositely directed
perceptions and actions that do not arise from opposite illu-
sions, but rather from the experimental conditions chosen for
comparison (Ganel et al. 2008; Grandy and Westwood 2006).
In one such study (Grandy and Westwood 2006), grip forces
associated with alternate rapid lifting of a small, lighter object
(2.7 N) and a large, heavier one (3.2 N) from a table were
measured. After several trials, motor adaptation led to the appli-
cation of appropriate grip forces for both objects, although the
SWI persisted—consistent with previous results (Flanagan and
Beltzner 2000). Because the large object was chosen by the
experimenter to be heavier than the small object and the SWI
was sufficiently powerful to overcome the weight difference
between them, the larger object was perceived as lighter (i.e.,
illusory underestimation), whereas grip forces associated with
it were appropriately greater (i.e., accurate estimation). This
resulted in oppositely directed perceptions and actions without
the presence of opposite illusions; i.e., the motor system’s
behavior was accurate, whereas the perceptual estimate was
biased by the SWI. In contrast, our findings show illusions that
oppose one another and generate opposite biases in the motor
and perceptual systems. The current illusions depend on the
integration of prior expectations with sensory information,
unlike the grip force patterns previously studied that reflect
only prior expectations about object weight (Flanagan and
Beltzner 2000; Flanagan et al. 2001), rather than the integration
of sensory information with these expectations.

Contrast enhancement and efficient coding

Because the integration of prior expectation and raw sensory
information by the perceptual system exaggerates unexpected
sensory information (rather than discounting it) in the SWI, it
cannot be optimal (i.e., minimize the variance) for producing
accurate weight estimates in the presence of sensory noise.
However, the exaggeration of unexpected sensory information
in this anti-Bayesian weight estimation can be viewed as a type
of contrast enhancement, an information-processing mecha-
nism that is pervasive throughout early sensorineural process-
ing of auditory, somatosensory, and visual information (Bar-
low 2001). Contrast enhancement can be especially useful for
the detection of object features to aid in classification. For
example, in the visual system, contrast enhancement can im-
prove the ability to detect the edges of objects and thus identify
their shapes at the cost of reduced ability to identify raw
luminance levels or to accurately compare luminance in two
different regions of the same visual scene (Albers 1975). A
light object placed on a dark background appears lighter than
it is. If we apply a simplistic Bayesian framework to this
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example, where the background color represents the prior
expectation and the light object is the raw sensory information,
we see that contrast enhancement produces a posterior in which
the difference between the prior and the sensory information is
exaggerated, thus forming an anti-Bayesian estimate.
Another apparently anti-Bayesian phenomenon that has been

extensively studied is the tilt aftereffect (Campbell and Maffei
1971; Gibson 1937). After staring at a vertical grating for a
period of time (30 s to a few minutes), a grating with similar
orientation appears to be tilted further away from vertical than
it is. Looking at this phenomenon from a Bayesian perspective,
we would expect that prolonged exposure to a vertical grating
will help form a prior expectation that the grating is most likely
to be vertical (at 90°). Subsequent presentation of a rotated
grating (e.g., 80°) would be combined with this prior expecta-
tion and we would expect the net estimate of the tilt to be
between 80 and 90°, consistent with a discount on unexpected
information. Note that the tilt aftereffect instead shows a
repulsive, contrast-enhancing bias such that the perceived an-
gle in this case is close to 75° (Campbell and Maffei 1971).
This corresponds to an exaggeration of unexpected sensory
information and an anti-Bayesian estimate.
It has been suggested that the repulsive bias seen in the tilt

aftereffect might be compatible with Bayesian estimation if the
adaptation was interpreted to affect the likelihood function
rather than the prior (Simoncelli 2009; Stocker and Simoncelli
2006b). However, this explanation is somewhat difficult to
defend because prior expectations must be derived from pre-
vious experience (Ellis and Lederman 1998; Flanagan et al.
2008; Körding and Wolpert 2004). Additionally, the tilt illu-
sion, which has essentially the same sensory consequences as
those of the tilt aftereffect (Campbell and Maffei 1971; Gibson
1937; Wainwright 1999), is believed to arise from the same
mechanisms (Schwartz et al. 2007) but cannot reasonably be
explained by an adapted likelihood function because no adap-
tation occurs. Furthermore, the classic SWI in which two
equal-mass but different-sized objects are compared cannot be
explained by differences in adapted likelihood functions be-
cause 1) the SWI is present on the first lift, before adaptation
could occur; and 2) these likelihood functions would apply to
raw sensory information about weight, which is the same for
both objects.
Repulsive, contrast-enhancing biases are thought to be com-

patible with the efficient coding hypothesis. This hypothesis
suggests that neural representations of information maximize
the efficiency of information transmission. A key mechanism
for accomplishing this is the reduction of redundancy in infor-
mation transmission (Barlow 1990). Consequently, efficient
coding schemes remove correlations between transmitted per-
ceptual variables because correlations between these variables
would lead to redundant information transmission with subop-
timal efficiency (Barlow 2001; Wainwright 1999). In these
schemes, correlations between variables are generally removed
by increasing mutual inhibition (Barlow 1990). Because prior
expectations generally represent correlations between variables
(e.g., the expectation driving the SWI is that object size and
weight are positively correlated) and Bayesian integration
biases sensory estimates toward these expectations, inhibitory
decorrelation—which increases the independence between
variables—produces biases that are opposite to Bayesian inte-
gration biases.

On the face of it, it would seem that optimal estimation (via
Bayesian integration) and efficient coding for optimal trans-
mission of information should produce similar, if not the same,
effects. However, as discussed earlier, the biases produced are
generally opposite of one another. How can this be? The
answer is that these information-processing schemes are opti-
mal for different things. In particular, efficient coding schemes
dictate how sensory signals should be encoded to maximize the
information carried during transmission (Wainwright 1999).
This produces an adaptive encoding that must be decoded after
transmission for the original sensory signals to be recovered
without distortion. However, these efficient coding schemes do
not specify how the original sensory signal should be decoded.
The theories of efficient coding generally attempt to explain
perceptual biases as a result of a “coding catastrophe”
(Schwartz et al. 2007)—i.e., downstream decoding mecha-
nisms do not provide any compensation for upstream adaptive
encoding. Thus according to this theory, the encoding is
adaptive but the decoding is not, resulting in a mismatch
between the two that accounts for perceptual biases. This
mismatch occurs because efficient coding schemes are not
concerned with how information from these sensory signals
should be used after transmission. On the other hand, optimal
estimation is concerned only with how sensory signals are
decoded; here the computational goal is to provide decoded
estimates, based on sensory information, that are maximally
accurate.
This suggests that although certain perceptions might not be

optimally accurate (consistent with Bayesian integration), they
might reflect optimal information encoding, transmission, or
storage. Alternatively, contrast enhancement in the perception
of weight may help to identify or classify objects that are
lighter or heavier than expected so that appropriate behavioral
strategies might be triggered, such as altering the posture used
to grasp an object. In fact, even though our motor actions
generally benefit from maximally accurate estimates, the cog-
nitive decisions informed by our perceptions may be better
served by the ability to determine and remember when objects
are different from expected even at the expense of accurate
estimation. Further study is required to determine whether the
perceptual biases observed in the classical SWI reflect efficient
coding or task-dependent contrast enhancement or an entirely
different mechanism for sensory integration.
Although we may not fully understand why anti-Bayesian

perceptual estimates occur, it is clear that these estimates are
oppositely biased from Bayesian estimates, suggesting the
existence of multiple mechanisms for integration of prior
expectations with raw sensory information. Widespread exper-
imental evidence of Bayesian integration has accumulated over
the last few decades (Ernst and Banks 2002; Körding and
Wolpert 2004; Körding et al. 2004; Sato et al. 2007; Stocker
and Simoncelli 2006a; Weiss et al. 2002). However, the current
work makes it clear that Bayesian integration is not universal
because it does not always occur—even under conditions in
which it could apply—when prior expectations and raw sen-
sory information are known to influence final estimates.
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