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2.1 INTRODUCTION

Human beings make lots of mistakes. It does not take a study to show
that when we are drunk, tired, or in the grip of rage, we can believe and do
some very silly things. But according to an enormously influential vein of
scientific research, one that has dominated the study of human judgment
and decision-making for more than four decades, we are error prone in
far more fundamental ways. Across a very wide range of judgment and
decision-making tasks, people appear to make errors that systematically
violate familiar canons of rationality (Baron, 2008; Pohl, in press). This has
led many to conclude that the formal theories encoding these canons—the
probability calculus and expected utility theory in particular—simply fail
to describe human cognition. More generally, the evidence of deep defi-
ciencies in human reasoning has led some philosophers and psychologists
to worry that human beings are not, as previously supposed, rational be-
ings at all—that we “lack the correct programs for many important judg-
mental tasks” and lack “an intellect capable of dealing conceptually with
uncertainty” (Slovic et al., 1976, p. 174).

This pessimistic interpretation of the research on human inference is
not, of course, without its detractors. One very common response is to
criticize, on methodological grounds, the various experiments that are
supposed to support such pessimism (Schwarz, 1996; Gigerenzer, 1996).
Another is to reject the normative standards typically adopted by propo-
nents of the pessimistic interpretation (Gigerenzer and Gaissmaier, 2011).
But perhaps the most influential line of response comes from recent efforts
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18 2. BAYESIAN PSYCHOLOGY AND HUMAN RATIONALITY

to apply Bayesian statistics to cognition. Over the past decade, the devel-
opment of Bayesian models has become pervasive across the cognitive
sciences, including vision science, linguistics, memory research, devel-
opmental psychology, and the psychology of reasoning. Although these
models vary considerably, one widely shared presumption is that human
cognition is, in some quite fundamental sense, well described by Bayes-
ian probability theory. Further, since Bayesian cognitive scientists—in
full agreement with proponents of the pessimistic interpretation—view
probability theory as a normative theory of rationality, they also contend
that human cognition is in some quite fundamental sense rational. As one
group of prominent researchers has put it:

[I]t seems increasingly plausible that human cognition may be explicable in ra-
tional probabilistic terms and that, in core domains, human cognition approaches an
optimal level of performance. (Chater et al., 2006)

Thus in contrast to the pessimism described earlier, Bayesian cognitive sci-
entists tend to be optimistic when it comes to matters of human rationality.
This paper is part of a larger project in which we chart carefully the
implications of Bayesian research in cognitive science for debates over the
extent of human rationality. In most general terms, our question is this:

The Vindication Question: To what extent does recent Bayesian psychological re-
search vindicate the contention that human cognition is rational?

Addressing this question turns on triangulating three kinds of issues:
(1) issues about the norms of rationality, (2) issues about the nature of
Bayesian cognitive models, and (3) empirical research regarding the fit be-
tween these models and actual human performance. In the present paper,
we restrict ourselves to clarifying the issue of how Bayesian norms should
be construed, and to working through one particular study—due to Tania
Lombrozo—which illustrates some of the complexities involved in assess-
ing the implications of Bayesian research for claims about the extent of
human rationality. Though the conclusions we reach are by necessity pro-
visional, the position we adopt is neither as pessimistic as some would
advocate, nor as optimistic as others. Judgments are more sensitive to evi-
dence than is suggested by the pessimists, but it’s far less than optimal.

2.2 THE STANDARD PICTURE AND THE STANDARD
EMPIRICAL CHALLENGE

In order to assess how Bayesian research bears on issues about the
extent of human rationality, we need some normative standard against
which the quality of human inference can be measured: an account that
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specifies how one ought to make judgments and decisions. As one might
expect, there is considerable debate in both philosophy and the social sci-
ences concerning this issue. Nevertheless, there is widespread consensus
among reasoning researchers in general, and Bayesians in particular, that
the default standard is what the philosopher Edward Stein has called the
standard picture of rationality.'

2.2.1 First Pass
According to the standard picture (SP):

[T]o be rational is to reason in accordance with principles of reasoning that are based
on rules of logic, probability theory and so forth. If the standard picture of reasoning
[rationality] is right, principles of reasoning that are based on such rules are norma-
tive principles of reasoning, namely they are the principles we ought to reason in
accordance with. (Stein, 1996, p. 4)

This characterization of SP is very widely adopted in the literature, of-
ten by quoting exactly the passage cited previously. We find a very similar
description from psychologists Chase, Hertwig, and Gigerenzer (1998):

Most researchers of inference share a vision of rationality whose roots trace back to
the Enlightenment. This now classical view holds that the laws of human inference
are equivalent to the laws of probability and logic (p. 206).”

With one significant caveat, which we discuss below, this character-
ization accurately captures the received view of rationality within the in-
tellectual communities most relevant to our present discussion, though,
as we will soon see, it excludes many others. Most importantly, it clearly
captures the attitudes of Bayesian cognitive science. In a recent, influen-
tial paper, for example, Perfors and coworkers are quite clear that they
view logic and probability theory as the normative core of a theory of
rationality:

Bayesian probability theory is not simply a set of ad hoc rules useful for manipulating
and evaluating statistical information: it is also the set of unique, consistent rules for
conducting plausible inference (Jaynes, 2003). In essence, it is an extension of deduc-
tive logic to the case where propositions have degrees of truth or falsity—that is, it is
identical to deductive logic if we know all the propositions with 100% certainty. Just
as formal logic describes a deductively correct way of thinking, Bayesian probabil-
ity theory describes an inductively correct way of thinking. As Laplace (1816) said,
“probability theory is nothing but common sense reduced to calculation.” (Perfors
etal., 2011a,b)

In short, not merely do Bayesian cognitive scientists think that prob-
ability theory is a powerful descriptive resource, they also maintain that
it constitutes a core aspect of a normative theory of rationality. In what
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follows we assume a conception of SP incorporates Bayesian probability
as a part.

Now for the caveat. It is important to notice a lacuna in the previous
characterizations of SP. As a matter of fact, the aspects of the rationality
debate on which philosophers have tended to focus are those concerned
with theoretical reasoning: roughly, reasoning concerned with the mak-
ing of judgments and revision of belief. The principles of reasoning most
relevant to such tasks, and the ones foregrounded by Stein, are those
derived from logic and probability theory—hence the reference to “prin-
ciples of reasoning ... based on rules of logic, probability theory and so
forth.” But the “so forth” covers a class of principles that ought not to be
ignored. For there is more to reasoning than theoretical reasoning. In ad-
dition, there is practical reasoning, which is concerned not so much with
what to believe as with what to do, with the making of decisions. Despite
the tendency of philosophers to focus on theoretical reasoning, it is quite
clear that those psychologists and behavioral economists interested in
human rationality are at least as interested in practical reasoning—with
how well we make decisions. And just as there are principles of theo-
retical reasoning derived from the formal theories, there are also prin-
ciples of practical reasoning based on formal theories, albeit expected
utility theory as opposed to logic or probability theory (von Neumann
& Morgenstern, 1944). Indeed much of the most important empirical
work on reasoning by Kahneman and Tversky, (1979) among others, has
concerned the extent to which human decision-making conforms to the
dictates of expected utility theory. In view of this, a more complete char-
acterization of SP ought to make reference to expected utility theory as
well as logic and probability theory. This will be important to our discus-
sion in later sections.

2.2.2 Accordance Conditions and the Standard Picture

It is common to note that implicit in SP is a general view about norma-
tive standards, sometimes called deontology (Stich, 1990; Samuels, Stich, &
Bishop, 2002). What deontologists quite generally maintain is that what it
is to reason correctly—what is constitutive of good reasoning—is to rea-
son in accord with the appropriate set of rules or principles. The SP adds
to this a specification of what the appropriate rules are, viz, ones based on
logic, probability theory, etc.

All this is, of course, familiar territory. What is less commonly noted,
however, is that this view of rationality has a crucial lacuna: there is no
specification of what accordance with the rules requires. The problem is
that these accordance conditions can be specified in quite different ways;
and different specifications lead to quite different conclusions, both about
the plausibility of SP as a normative standard, and about the extent of
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human rationality. In what follows we consider, and eliminate, two ob-
vious conceptions of accordance before suggesting an alternative, more
tenable view, one that we think makes better sense of Bayesian claims re-
garding human rationality.

2.2.2.1 Accordance as Optimal Performance

Let us start by eliminating a conception of accordance conditions that
is obviously too strong. Imagine an agent whose beliefs, inferences, and
decisions always conformed to SP. Such an agent would, for example,
satisfy the coherence conditions specified by Bayesian probability theory
and would always maximize expected utility. The performance of such an
agent would accord precisely with that prescribed by SP. It would perform
optimally by the lights of SP.

Of course, no one—not even the most ardent Bayesian—claims that hu-
mans accord with SP in this way. It is very clear that fatigue, intoxication,
distraction, limits of attention and memory, and a host of other factors
result in errors. That we make such performance errors is common ground
between all parties (for further discussion, see Stein, 1996, Chapter 1, and
Stanovich, 1999). That is not to say, of course, that disagreements about
the extent of human rationality never concern performance. There are, for
example, plenty of disagreements concerning the precise extent to which
our inferences and judgments fit the patterns prescribed by SP. But such
matters are almost invariably secondary to issues about the extent to
which our underlying inferential competences are normatively appropri-
ate (Stein, 1996). Indeed data about performance are typically of central
interest only to the extent that they are considered to help assess claims
about the nature of this underlying competence.

2.2.2.2 Strong Algorithmic Accordance

Though there are many ways to construe inferential competences,’ when
researchers are interested in whether an inferential process is normatively
appropriate they very typically supposes that competences are to be con-
strued as algorithmic level descriptions of psychological processes. This
is, for example, what Slovic et al. appear to be assuming in the passage
quoted earlier, when they suggest that humans “lack the correct programs
for many important judgmental tasks.”* Suppose this is so, that the rel-
evant level of normative assessment is a Marrian algorithmic level. Then
accordance with SP should also be an algorithmic requirement. Further,
on such a view it is natural to think that accordance with SP requires some
stepwise isomorphism between the mathematics of probability theory
and the inferential process under consideration. So, for example, accor-
dance with Bayes rule would require that a cognitive process conform, in
a stepwise fashion, to the mathematical operations required to compute
Bayes rule.’
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Though seldom articulated, we suspect the present view, which we call
strong algorithmic accordance, is implicit in many discussions of SP, espe-
cially among those who reject SP on the basis of familiar tractability con-
siderations (Gigerenzer et al., 1999). As many theorists have noted, execut-
ing optimal inferential principles, such as Bayes rule, are extraordinarily,
computationally demanding. For example, as Harman notes:

If one is to be prepared for various possible conditionalizations, then for every
proposition P one wants to update, one must already have assigned probabilities
to various conjunctions of P together with one or more of the possible evidence
propositions and/or their denials... [T]o be prepared for coming to accept or reject
any of ten evidence propositions, one would have to record probabilities of over
a thousand such conjunctions for each proposition one is interested in updating
(Harman, 1986, 25-26)

Thus Bayesian conditionalization is intractable in the technical sense
that it is superpolynomial in the size of the input.” But more impor-
tantly, given the computational demandingness of Bayesian calcula-
tions, we can know—even before entering the lab—that people are not
doing these calculations. In which case, if the standard picture requires
of rational agents that they solve these problems by actually doing the
computations, the consequences appear dire for either SP or human ra-
tionality. One might accept the characterization of rationality offered by
SP but deny that people are rational. Alternatively, one might maintain
that SP is mistaken. Indeed, one might do so precisely because SP en-
tails that people are not rational. For as Rysiew notes: “Insofar, then, as
we wish to preserve even the possibility that humans are rational... SP
seems like a pretty unsatisfactory account of what rationality requires”
(Rysiew, 2008, p. 1165).

If the forementioned is correct, then a commitment to both SP and the
claim that humans are rational would appear unstable. Specifically it
would seem that one cannot insist, as Bayesian cognitive scientists do, that
probability theory is normative and that it accurately describes human
inferential processes. Yet for all the familiarity of this conclusion, we think
it is mistaken. A very different but in our view more sensible reaction is to
note that the dilemma turns on an uncharitable reading of SP. The claim
that we cannot satisfy the norms of SP turns on assuming a strong algo-
rithmic conception of accordance—that we would need to solve computa-
tionally difficult problems, such as belief updating, by actually doing the
computations specified by SP. But if this is so, then rather than rejecting
SP, we think it is reasonable merely to reject a strong algorithmic concep-
tion of SP’s accordance conditions. On such a view, there is no need either
to reject the rationality of human cognition or to dispense with SP. Rather,
what is required is an alternative, more sensible construal of accordance
conditions. What might this be?
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2.2.2.3 Weak Algorithmic Accordance

In our view, there is a natural answer to this question, which is well mo-
tivated by how scientists explicitly handle the task of analyzing large data
sets. In brief, scientists routinely confront statistical problems that cannot
be solved by analytic methods. To calculate analytically the denominator
in Bayes theorem, for example, one needs to sum the joint probabilities of
each combination of values from each variable. And in order to do this,
the number of joints that need to be calculated increases exponentially as
the number of variables increases (eg, if there are 5 variables, each with
4 values, then the number of joints that need to be calculated are 4°). In
problems with many variables, this is intractable, not just for our people,
but for our most powerful supercomputers.

In such instances, what do scientists do? What they do not do is throw
up their hands and exclaim that no rational means of calculation is avail-
able. Instead they develop and deploy various approximation techniques.
Over the last 20 years or so, researchers have developed a range of sam-
pling methods that approximate Bayesian inference: for example, Markov
Chain Monte Carlo methods such as the Metropolis Hastings algorithm.
To get an intuitive sense of how such methods work, imagine there is a
box in front of you that contains hundreds of dice of different denomina-
tions. Your task is to estimate the average result of a roll of a die randomly
taken from the box. The analytic solution would require identifying all of
the different dice, their denominations, their biases, and computing the
priors for each die type and the likelihoods for each value for each die
type. And even for a few dozen dice, this would vastly exceed available
computational resources. Here is an alternative, more tractable strategy.
Instead of seeking an analytic solution, you could just sample from the
box: randomly pull out a die, roll it, record the result, replace, and re-
peat. This provides you with a sample from the posterior distribution;
and if you collect a sufficiently large sample, you can use the average of
these values to estimate the true mean. Further, the sample can be used to
calculate other features of the probability distribution, such as, the error
and standard deviation.

Clearly such an approximation of Bayesian inference is not an ana-
lytic solution. In a sense, it does not use Bayesian inference at all. It is
not as if these kinds of method use Bayes theorem, for example. Instead,
they provide reliable and general methods that enable scientists to by-
pass the need for analytic solutions. Further, such sampling methods are
very typically the best, feasible options available to scientists; and for
this reason, they have been used across a broad array of fields, including
epidemiology (Hamra, MacLehose, & Richardson, 2013), population ge-
netics (Beaumont, Zhang, & Balding, 2002), and astronomy (Van der Sluys
et al., 2008). Further—and this is our main point—no one would seriously
deny that it is rational for scientists to use such methods. That is, tacit
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in scientific practice is the presumption that such methods are rational.
Indeed, we suspect that denying this presumption would be viewed by
most—ourselves included—as just plain silly.

What does all this have to do with how best to construe SP? If it is rational
for scientists to deploy approximation techniques to handle otherwise in-
tractable computational problems, then we maintain it is no less rational for
individual cognizers to do so. In other words, we think that, construed algo-
rithmically, accordance with SP should require no more than good approxi-
mation methods, at any rate, not when analytic solutions are infeasible. To a
first approximation, then, we propose the following construal of accordance:

Weak Algorithmic Accordance: Where no tractable analytic solution is available,
a cognitive process (or system) accords with SP—Bayesian norms, in particular—
when it implements a technique that constitutes a good Bayesian approximation
method.

This proposal requires some unpacking. First of all, notice that is it less
demanding than strong algorithmic accordance in at least two respects.
First, it does not require that we possess God-like computational abilities.
This is because the runtime properties of good approximation algorithms
are, more or less by definition, more feasible than those of optimal solu-
tions. In particular, they are not superpolynomial on the size of the input.
Second, though perhaps less obviously, weak algorithmic accordance is
less demanding in the sense that it does not require that our inferential
competences—absent performance errors—compute the Bayesian optima.
Recall, on the strong algorithmic conception, an inferential competence
must be isomorphic to the formal principles of SP. But since these princi-
ples define the optimal function, it also follows that a rational competence
must underwrite optimal computation. In contrast, the requirement that
a reasoning process implement a good Bayesian approximation method
imposes no such demand, since an approximation algorithm can be very
good—indeed even if it systematically deviates from the optima.

So, we have explained two respects in which weak algorithmic accordance
yields a less demanding, and more tenable, construal of SP. But we also need
to say more about what demands it does impose, specifically what counts as
a good Bayesian approximation technique. As one might expect, there is a
great deal to be said here. Indeed, there is an enormous literature in theoreti-
cal computer science regarding the desiderata on approximation techniques
and how best to implement them.” Further, there is a very substantial litera-
ture on sampling methods, such as Monte Carlo Markov Chain methods and
Gibbs filters. But for the moment, we restrict ourselves to four comments.

First, good approximation techniques are developed in such a way as
ensure generality. Specifically, approximation methods are almost invari-
ably designed to produce a result across the full range of a problem’s in-
stances, where a problem is defined by its optimal solution. In the case
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of Bayesian sampling methods, the problem is defined by the optimal,
that is, Bayesian, means of calculating posterior probabilities. So, good
Bayesian approximation techniques reliably approximate the Bayesian
optima for a very wide range of cases.

Second, good approximation techniques are very typically capable,
subject to resource limitations, of achieving extremely close approxima-
tions to the optima. In the case of Bayesian sampling methods, such as the
Metropolis—Hastings algorithm, the result asymptotes to the optima as a
function of the number of samples that are taken.

Third, and importantly for our purposes, good Bayesian approximation
techniques require a sensitivity to large amounts of relevant information.
Though they permit tractable computation in part by not considering every
available piece of information, the dual demands of generality and close
approximation to the Bayesian optima require that such methods sample
very widely, and in an unbiased fashion, from the posterior distribution. In
this regard, they are quite unlike many of the inferential methods recently
popularized by cognitive scientists, such as the fast and frugal heuris-
tics, well known from the work of Gerd Gigerenzer and his collaborators,
which we discuss briefly in the next section. For in contrast to Bayesian
sampling methods, such heuristics solve judgmental tasks despite ignor-
ing virtually all the available information (Gigerenzer et al., 1999).

Finally, what counts as a good (ie, rational) approximation technique to
use can vary across contexts. Imagine two approximation algorithms for
the same problem, one is slow but highly accurate, the other is fast but less
accurate. In a context where accuracy is highly valued and speed is not,
then it is irrational to use the fast approximation algorithm. However, in a
context where it is crucial to get an answer quickly, then it can be rational
to use the less accurate algorithm. This context sensitivity of what counts
as a good approximation technique is naturally accommodated in terms
of expected utility. What counts as rational will depend on the utilities
associated with solving the task in a particular context. If there is a high
utility for speed and lower utility for accuracy, expected utility theory can
say that it is rational to use the fast algorithm.

2.3 THE STANDARD CHALLENGE
TO HUMAN RATIONALITY

In the previous section, we sought to develop a version of SP that pro-
vides guidelines for the assessment of human cognition without being
so idealized as to fall afoul of familiar tractability objections. On a weak
algorithmic conception of accordance, SP does not guarantee human ir-
rationality. Nonetheless the elaboration of SP does little to help address
the most prominent challenge to human rationality. This is because the
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standard challenge is an empirical one that goes far beyond saying merely
that agents are hampered by various processing constraints.

2.3.1 The Challenge (a Reminder)

According to the standard challenge, there is an enormous and grow-
ing body of data which suggest that people fail to accord with SP because
they systematically ignore critical information in making probabilistic in-
ference. The key tradition here, heuristics and biases (HB), is quite well
known, so we will not go into detail here. Rather, we will just present one
illustration—but a compelling one—concerning the tendency for people
to ignore base rate information. In a classic experiment, Kahneman and
Tversky (1973) gave one group of subjects the following scenario:

A panel of psychologists have interviewed and administered personality tests to 30
engineers and 70 lawyers, all successful in their respective fields. On the basis of this
information, thumbnail descriptions of the 30 engineers and 70 lawyers have been
written. You will find on your forms five descriptions, chosen at random from the 100
available descriptions. For each description, please indicate your probability that the
person described is an engineer, on a scale from 0 to 100.

Another group of subjects got the same scenario, but with the base rates
reversed; in this condition there were said to be 30 lawyers and 70 engi-
neers. Subjects were then given descriptions, one of which was neutral,
another was made to fit with stereotypes of lawyers, and another with the
stereotype of engineers. Here is the text for the engineer stereotype:

Jack is a 45-year-old man. He is married and has four children. He is generally con-
servative, careful, and ambitious. He shows no interest in political and social issues
and spends most of his free time on his many hobbies which include home carpentry,
sailing, and mathematical puzzles.

Now, subjects are supposed to indicate how likely it is (from 0 to 100)
that Jack is an engineer. Kahneman and Tversky found that participants
in both conditions gave the same, high probability estimates that Jack is
an engineer. The fact that there were 70 engineers in one condition and 30
in the other had no discernible effect on subjects’ responses. Moreover,
when subjects were given the description that was neutral with respect to
the stereotypes, people tended to say that there was a 50% chance that the
person was an engineer, once more indicating that they were not using the
available base rate information.

Notice: the problem here is not computational tractability. These are
simple statistical problems, but people perform poorly at them. And this is
just one example taken from a very large set. People show systematically
bad performance on both demonstrative and nondemonstrative inference
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(see Stanovich, 1999, and Pohl, in press, for reviews). Moreover, Kahneman
and Tversky have a systematic explanation for these reliable patterns of
error: people rely on heuristics that often yield accurate results, but also
deviate in systematic ways from rational norms. In the case of the lawyers
and engineers problem, for example, people are relying on a representa-
tiveness heuristic whereby they estimate probability by thinking about
how representative a description is of the category, without integrating
the base rate information into their judgment.

2.3.2 A Consensus in the Research on Human Reasoning

The standard challenge to human rationality is very typically devel-
oped by drawing on research from the HB tradition. But it is important
to note that, despite often intense criticisms, even the most prominent op-
ponents of this tradition are in substantive agreement regarding the extent
to which human cognition accords with SP (Samuels et al., 2002). Most
notably, the research program associated with Gerd Gigerenzer, which
promotes fast and frugal heuristics (FFH), does little to undermine this
claim (Gigerenzer et al. 1999). To see why, consider one of the most effec-
tive such heuristics: Take the Best. Imagine you have to predict which of
two cities has a higher rate of homelessness. Further, imagine you have
six cues—whether the city has rent control, whether the temperature is
above or below median, and so on—and that these cues are ranked in
terms of how well they predict rates of homelessness. Take the Best says
that when predicting which of two cities has the higher homelessness rate,
one should initially only look at the best predictor, for example, rent con-
trol, and if one city has rent control while the other does not, one should,
without considering any further information, judge the city with rent con-
trol to have a higher rate of homelessness. Only if the best predictor fails
to discriminate—if the two cities both have, or both lack, rent control—
should one consider the next best predictor. And only if the second cue
fails to discriminate should the third best cue be considered, and so on,
down the list of predictors.

Now it turns out that heuristics, such as Take the Best, do quite well
on a range of prediction tasks. Indeed, Take the Best often does as well
as models that take all of the cues into account (Gigerenzer, Czerlinski,
& Martignon, 2002). But for all that, research within the FFH tradition
yields much the same conclusion as HB regarding the extent to which
human cognition accords with SP. As Michael Bishop notes, according to
the FFH tradition, “people can, and often should, use very reliable FFHs
that ignore lots of evidence and do not properly integrate the evidence
they do consider” (Bishop, 2006, p. 217). In the homelessness case, Take
the Best counsels us to ignore all the rest of the data once we have found
the best cue that discriminates between the cities. This deliberate neglect
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of data is plainly at odds with SP. More generally, heuristics such as Take
the Best are much like the heuristics proposed by HB, in that they fail to
satisfy traditional epistemic demands on rationality. Here is Rysiew on
this point:

[W]e are capable of certain other, more ‘coherence’-oriented forms of cognizing —
checking for consistency; deliberately, even ponderously, weighing evidence; reflect-
ing on our belief-forming processes themselves; not to mention, conducting empirical
investigations into our own natural belief-forming tendencies so as, perhaps, to ulti-
mately become better thinkers; and so on. And these sorts of more SP-type activities
are the sort of thing that many epistemologists have thought to be central to epistemic
rationality, and the kind of thing that’s required for justified belief and knowledge.
(2008, p. 1166)

Sensibly, most epistemologists do not give necessary and sufficient con-
ditions on good reasoning. But as Rysiew’s passage suggests, episte-
mologists often suggest necessary conditions. Internalists, in particular,
maintain that good reasoning requires the agent to be attentive to pos-
sible inconsistencies among her beliefs and to be sensitive to the available
evidence (Cohen, 1986, p. 575).

Despite their myriad disagreements, then, the HB and FFH traditions
wholly agree that human cognitive processes very typically fail to satisfy
traditional demands on rationality, and as such they agree that we fail to
accord with SP. Of course, there are many ways in which philosophers
and psychologists have responded to such claims (Samuels et al., 2002).
In what follows, however, we want to consider one recent and extremely
direct attempt to rebut the challenge. As we will see in the next section,
there is a growing body of evidence that suggests that people’s inferences
do in fact conform to the principles of probability theory.

2.4 RATIONALITY REANIMATED

Recent work in Bayesian cognitive science provides a new possible re-
sponse to worries about human rationality. In this tradition of work, one
identifies a cognitive problem that needs to be solved, and then character-
izes the normatively appropriate solution to the problem in terms of stan-
dard tools of probability theory, like sampling and model selection. Then
one conducts experiments to measure whether human judgment and de-
cision conforms to the normative model. Researchers within this tradi-
tion maintain that people draw inferences that conform to Bayesian mod-
els across a wide range of cognitive domains, including causal inference
(Griffiths & Tenenbaum, 2009), grammar learning (Perfors et al., 2011a,b),
and category learning (Kemp, Perfors, & Tenenbaum, 2007). Indeed, sev-
eral studies have shown that infants make appropriate probabilistic infer-
ences: infants are sensitive to priors (Téglds et al., 2007), are attentive to
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whether sampling is random or directed (Kushnir, Xu, & Wellman, 2010),
and even infer overhypotheses (Dewar & Xu, 2010).

In order to discuss different aspects of how the Bayesian program im-
pacts debate over rationality, we describe in some detail one example from
recent research on probability judgments and simplicity in causal explana-
tion. The research we discuss, by Tania Lombrozo and colleagues, draws
on Bayesian theory to evaluate human performance. But the research is ac-
tually not presented as part of the Bayesian psychology program proper.
We focus on it because it is especially apt for considering whether humans
exhibit weak algorithmic accordance with SP.

It is a familiar theme in the philosophy of science that simpler hypoth-
eses should be preferred. In the context of probabilistic inference, we can
see one reason for this preference. More complex hypotheses risk overfit-
ting the data. The greater flexibility of such hypotheses can mean that they
extend to capture aspects of the data that should properly be construed
as noise. As a result, the more complex hypothesis might do a poor job
of predicting future data. In work on probabilistic inference, this issue is
addressed by penalizing more complex hypotheses for their greater flex-
ibility. For instance, there is a Bayesian form of Occam’s razor that assigns
complex hypotheses a lower prior probability (MacKay, 2003).” The data
can, of course, overturn the prior probability, with the more complex hy-
pothesis winning out. But the simpler hypothesis is favored at the starting
gate. Thus we have two normative claims here: (1) all else equal, people
should favor a simpler hypothesis over a more complex one; and (2) peo-
ple should nonetheless reverse that preference if the data strongly favor
the more complex hypothesis.

Extant work indicates that people do favor simpler hypotheses in, for
example, category learning (Feldman, 2000; Griffiths, Christian, & Ka-
lish, 2008). We will concentrate, however, on the issue of simplicity in
causal explanation. In an elegant line of research, Tania Lombrozo has
explored the role of simplicity in people’s explanations (diagnoses) of
disease when provided information about base rates (2007; Bonawitz &
Lombrozo, 2012). Base rates are given by specifying the total size of the
population and the 7 later specifying the number of people in the popula-
tion with each disease. Simplicity is a function of the number of diseases
the person might have (1 or 2). Since the proportions are stipulated, it is
trivial to do the calculations to see when the simpler explanation is more
probable.

The experiments present unfamiliar scenarios. In one experiment, the
scenario is set on an alien planet, Zorg, and there are three diseases at
issue, Tritchet’s syndrome, Morad’s disease, and a Humel infection. The
symptoms too are unfamiliar (sore minttels, purple spots). The structure
of the experiment is that disease 1 causes both symptoms, disease 2 causes
one of the symptoms, and disease 3 causes the other symptom. As a result,
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if an alien presents with both symptoms, D1 will be simpler than the other
available explanation, which is that the alien has both D2 and D3. The oth-
er factor in the decision is the base rate of the diseases in the population. In
Lombrozo’s experiment (study 2), the base rate information was explicitly
provided to the participants. In all cases, the total population was set at
750. In one condition, each disease is present in 50 individuals; in another
condition, D1 is present in 50, D2 is present in 250 individuals, and D3 is
present in 220 individuals. There were a total of eight such conditions. In
all conditions participants were told about an individual alien who had
both symptoms, and they were asked which disease(s) the alien had.

Let us walk through an example. Suppose the incidence of each dis-
ease is 50. Since both symptoms are present, the two plausible candidate
explanations are that the alien has D1 or both D2 and D3. Given the base
rates, the probability that the person has D1 is 50/750, and the probability
that she has both D2 and D3 is 50/750 X 50/750. This yields a probability
ratio of 15 to 1 in favor of the simpler explanation. And, indeed, when
participants are in this condition, they overwhelmingly favor the simpler
explanation. In another condition, the base rates are 50 for D1, 610 for D2,
and 620 for D3. In this condition, given the high base rates for D2 and
D3, it is in fact significantly more likely that the alien has both D2 and D3
rather than D1. As a defender of SP would hope, in this condition people
are more likely to judge that the individual has D2 and D3 rather than D1.

As noted previously, it is widely accepted that in probabilistic infer-
ence, simpler hypotheses should be favored, all else being equal. Earlier
work had shown that, at least at some implicit level, people favor simpler
hypotheses. Lombrozo’s data show that at the explicit level, people also
favor simpler explanations. Furthermore, Lombrozo shows that this pref-
erence for simpler explanations is moderated by base rate information. If
the base rate associated with the more complex explanation is sufficiently
high (compared with the simpler explanation), people will favor the more
complex explanation. Furthermore, Bonawitz and Lombrozo (2012) find
similar results with children, using a task involving colored chips that
have different effects on a machine. The red chip causes a toy’s light to
activate, the green chip activates the toy’s fan, and the blue chip activates
both. When the child has to determine which chip(s) fell into the machine,
they favor the blue chip (simple explanation) unless blue chips are very
rare, in which case they favor the explanation that a red and a green chip
fell in the machine.

In the foregoing example, people seem to show sensitivity to evidence
in ways that would be sanctioned by our weak accordance rendering of
SP. Adults and children in these tasks are sensitive to both simplicity and
to base rates, as the normative theory says they should be. There is no
reason to think that the subjects are throwing away data, as in the FFH
cases, nor is there reason to think that the subjects are failing to integrate
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evidence into their judgments as in the HB cases. Moreover, these pat-
terns of inference seem to be domain general. The tasks are pitched as ab-
stract questions about alien diseases (Lombrozo, 2007) and colored chips
(Bonawitz & Lombrozo, 2012).

2.5 RATIONALITY RECHALLENGED

Although a casual glace at the work on Bayesian inference might sug-
gest that people exhibit something close to optimal Bayesian performance,
a closer look reveals that this is far from the case. This holds for many
of the classic results in the field (Kemp et al., 2007; Schulz et al., 2007;
Xu & Tenenbaum, 2007). Since we already have a detailed explanation of
Lombrozo’s results, we will continue to focus on her work.

People should have a preference for simpler explanations, and, as we
saw in the previous section, they do. In addition, people should override
that preference if the data sufficiently favor a more complex explanation.
Again, as we saw, they do that too. However, we omitted a very important
fact about the results. People require far more evidence than they should
before they will overturn their preference for the simpler explanation.

In Lombrozo’s experiment, when the probability ratio is 15:1 in favor of
the simpler explanation, virtually all participants prefer the simpler expla-
nation (that the alien has just the one disease that causes two symptoms).
Further, when the ratio is 10:1 in favor of the more complex explanation,
the majority of participants favor the more complex explanation. But one
key detail that we omitted was this: if people are Bayesian reasoners, we
would expect almost everyone in this later situation—when the ratio is
10:1—to favor the more complex explanation. Yet, as a matter of fact, only
60% of participants did. More strikingly, when the ratio is 1:1, so that the
objective probability (calculated by base rates and joint probabilities) of
the simpler and more complex explanation is exactly the same, 90% of
participants favor the simpler explanation (241). And when the ratio is
2:1 in favor of the complex explanation, nearly 70% of adults still favor
the simpler explanation. Similar results were found in 5-year-old children
(Bonawitz & Lombrozo, 2012). The children preferred the simpler expla-
nation when the ratio was 2:1 in favor of the more complex explanation.’

So, despite initial appearances of excellence in human reasoning, per-
formance in Lombrozo’s studies is not nearly as close to the Bayesian norm
as one might hope. But recall: on our preferred construal, the SP demands
only weak algorithmic accordance with Bayesian norms. And to evaluate
whether people in Lombrozo’s experiments exhibit such accordance, we
need to know more about what the algorithmic process might be. One
great virtue of the Lombrozo work is that it permits a more precise un-
derstanding of the process than that afforded by much work in Bayesian
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psychology. As mentioned earlier, people have an excessive preference for
the simpler explanations. But, as Lombrozo notes, there are two expla-
nations for this divergence from proper Bayesian inference. The first is
that participants are underweighting base rates. The second is that people
have an overly strong prior bias in favor of simplicity. To place this in
context, it is helpful to consider an optimal algorithm. Such an algorithm
will describe a particular curve that represents responses as a function of
different base rates. Let us call that the Bayesian curve. If people ignore the
base rates, then we should not expect their responses to exhibit the same
slope as the Bayesian curve. On the other hand, if people have a strong
prior bias for simplicity, we would expect that to be manifested as a rela-
tively constant factor that overrates simpler explanations. Of course, peo-
ple might have both a simplicity bias and a tendency to neglect base rates.
However, if people have a strong simplicity bias but do not ignore base
rates, then we should expect the data curve to look a lot like the Bayesian
curve, knocked up by a constant factor, viz., the prior bias for simplicity.
As it turns out, this is precisely what Lombrozo finds. The data curve for
her experiment does approximate the Bayesian curve, albeit bumped up
by a constant factor (2007, pp.242 and 249)."

So, Lombrozo finds that people have an excessive bias for simplicity.
Yet we doubt that this bias can be explained as a product of performance
errors. Rather, it seems to be a feature of the algorithm itself. This means,
of course, that the algorithm fails to provide a very close approximation
to the optimal solution; and in that sense, it fails to meet the standards
demanded of approximation algorithms in science (such as Metropolis-
Hastings), where very close approximations to the optima are to expected.

Still, the process is obviously better than a coin flip. Indeed, the data
suggest that the algorithm does reasonably well by the other two condi-
tions we set for weak algorithmic accordance.

First, the algorithm is domain general, it is not dedicated only to solv-
ing problems about cheaters or incest. Rather, Lombrozo and colleagues’
research indicates that the algorithm is operative in tasks involving di-
agnosing diseases from symptoms and in tasks involving colored chips
activating a toy. This illustrates cross-domain capacity of the algorithm.
Moreover, insofar as these studies involve arbitrary factors (eg, colored
chips, unfamiliar symptoms of unfamiliar diseases), the algorithm itself
looks to be domain general.

Second, and more importantly, the algorithm appears to do quite well
by the third condition imposed by weak algorithmic accordance: that algo-
rithms ought to be sensitive to large amounts of relevant information. Re-
call the algorithms from the HB and FFH traditions. For example, the Tuke
the Best heuristic, developed by Gigerenzer and his colleagues is designed
to ignore most of the available information. Similarly, the representa-
tiveness heuristic described by Kahneman and Tversky is supposed to
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completely ignore base rate information in the course of generating judg-
ments. The algorithm implicated in Lombrozo’s causal explanation tasks
is clearly not like these. On the contrary, it is sensitive both to simplicity
considerations and to base rate information. Moreover, Lombrozo’s evi-
dence indicates that the algorithm does not simply pit simplicity against
base rates in a competition model, but actually integrates these two sourc-
es of information, leading to a nicely graded response curve.

By the standards of weak algorithmic accordance, then, the algorithm
implicated in Lombrozo’s task gets a mixed score. It does well by the
dimensions of sensitivity and generality, but it does less well by the di-
mension of approximating the optima. So, how do we answer the question
of whether the algorithm counts as SP rational? Without a clear proposal
about how closely the algorithm must approximate the optima to count
as rational, it is impossible to answer this question. Developing such a
proposal is obviously beyond the ambitions of this paper. But it may well
be that, at least in certain contexts, algorithms that score as well as the one
implicated in Lombozo’s task count as rational enough.
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Endnotes

1.

10.

Even those who demure from this consensus readily acknowledge that it is the default
view.

. Though it should be noted that Gigerenzer and his collaborators are not themselves ad-

vocates of the standard picture (SP).

. See Stein, 1996.
. Much the same is true of Stephen Stich’s well-known suggestion that the assessment of

human rationality within cognitive science is principally an issue about the extent to our
psycho-logic is normatively appropriate (Stich, 1990).

. This is quite similar to what cognitive scientists have in mind when they say that a model

and the process being modeled are strongly equivalent (Pylyshyn, 1984). The present sug-
gestion then is roughly equivalent to the claim that accordance with SP norms requires
human reasoning processes that are strongly equivalent to normative models of reasoning.

. Roughly, in the worst case, the number of steps required increases exponentially (or

worse) as a function of input size.

. For an accessible introduction, see Williamson & Shmoys, 2011.
. Technically, the way this works is a bit subtler. In Bayesian Occam’s razor one does

not simply assign a lower prior for the more complex hypothesis. Rather, the penalty
is naturally represented as occurring in the likelihood term. We can think of the more
complex hypothesis as a flexible hypothesis composed of more subhypotheses than
the simpler hypothesis. And the total probability for all these subhypotheses cannot
be greater than 1. When we calculate the posterior probabilities for the hypotheses, we
need to accommodate all of the subhypotheses. In effect, we need to spread out the total
probability of 1 across all the different subhypotheses in each hypothesis. Since the flex-
ible hypothesis has more subhypotheses, the probability will be spread out more thinly,
effectively leaving each subhypothesis of the flexible hypothesis with relatively lower
probability than each subhypothesis in the simpler hypothesis.

. This simplicity bias diverges even from what would be expected in “probability

matching”.

The adults in the Bonawitz & Lombrozo (2012) studies perform much better and do not
show a simplicity bias. It is plausible that this is because in the chips task it is much easier
to keep track of the base rates than it is in the aliens task. As a result, adults might not
need to rely on simplicity at all to succeed at the task.
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