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We propose a new version of the “theory theory” grounded in the computational framework of
probabilistic causal models and Bayesian learning. Probabilistic models allow a constructivist but
rigorous and detailed approach to cognitive development. They also explain the learning of both more
specific causal hypotheses and more abstract framework theories. We outline the new theoretical ideas,
explain the computational framework in an intuitive and nontechnical way, and review an extensive but
relatively recent body of empirical results that supports these ideas. These include new studies of the
mechanisms of learning. Children infer causal structure from statistical information, through their own
actions on the world and through observations of the actions of others. Studies demonstrate these learning
mechanisms in children from 16 months to 4 years old and include research on causal statistical learning,
informal experimentation through play, and imitation and informal pedagogy. They also include studies
of the variability and progressive character of intuitive theory change, particularly theory of mind. These
studies investigate both the physical and the psychological and social domains. We conclude with
suggestions for further collaborative projects between developmental and computational cognitive
scientists.
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The study of cognitive development suffers from a deep theo-
retical tension—one with ancient philosophical roots. As adults,
we seem to have coherent, abstract, and highly structured repre-
sentations of the world around us. These representations allow us
to make predictions about the world and to design effective plans
to change it. We also seem to learn those representations from the
fragmented, concrete, and particular evidence of our senses. De-
velopmental psychologists actually witness this learning unfold
over time. Children develop a succession of different, increasingly
accurate conceptions of the world, and it at least appears that they
do this as a result of their experience. But how can the concrete
particulars of experience become the abstract structures of knowl-
edge?

In the past, there have been no satisfying theoretical accounts of
how this kind of learning might take place. Instead, traditional
empiricist accounts, most recently in the form of connectionist and
dynamic systems theories (Elman et al., 1996; Thelen & Smith
1994), denied that there actually was the kind of abstract, coherent
structure we seem to see in adult representations. They saw instead
a distributed collection of specific associations between particular
inputs or a context-dependent assemblage of various functions.
Traditional nativist accounts, most recently in the form of modu-
larity and core knowledge theories (Pinker, 1997; Spelke, Brein-
linger, Macomber, & Jacobson, 1992; Spelke & Kinzler, 2007),
pointed to the structure, coherence, and abstractness of our repre-
sentations but denied that they could be learned.

Piaget (1926) famously tried to resolve this tension by calling
for a “constructivist” theory. But aside from the phrase itself, there
was little detail about how constructivist learning processes might
work. Piaget also made empirical claims; he described develop-
mental evidence that appeared to support constructivism. But in
the past 30 years, many of those empirical claims have been
overturned. The combination of theoretical vagueness and empir-
ical inadequacy doomed the Piagetian account.

Recently, however, a new set of computational ideas promises
to reconstruct constructivism. This new rational constructivism
(Xu, Dewar, & Perfors, 2009) uses the theoretical framework of
probabilistic models and Bayesian learning. In tandem, new em-
pirical studies, studies of the mechanisms of learning and studies
of the progressive character of development, provide support for
these theoretical ideas and suggest new areas of theoretical inves-
tigation. In this article, we weave together this new theoretical and
empirical work. The basic computational ideas and experimental
techniques we will discuss have been applied to many types of
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learning—from low-level vision and motor behavior, to phonology
and syntax. In this article, however, we focus on how these new
ideas explain the development of our intuitive theories of the
world.

Our first aim is to make the computational ideas accessible to
mainstream developmentalists (like us). It is certainly rational for
psychologists to want to ensure substantial empirical returns be-
fore they invest in a new set of formal ideas. So we want to share
our own experience of how the formal work can be understood
more intuitively and how it can lead to new empirical discoveries.
Our second aim is to review and synthesize a large body of
empirical work that has been inspired by, and has inspired, the new
theoretical ideas. Finally, we will suggest new directions that we
hope will lead to yet more empirical and theoretical advances.

The “Theory Theory” Revisited

Twenty years ago, psychologists began to outline a constructiv-
ist set of ideas about cognitive development and conceptual struc-
ture sometimes called the “theory theory.” (see, e.g., Carey, 1985;
Gopnik, 1988; Gopnik & Meltzoff, 1997; Gopnik & Wellman,
1992; Keil, 1989; Murphy & Medin, 1985; Wellman, 1990; Well-
man & Gelman, 1992). The theory theory claimed that important
conceptual structures were like everyday theories and that cogni-
tive development was like theory revision in science. Children
construct intuitive theories of the world and alter and revise those
theories as the result of new evidence. Theory theorists pointed to
three distinctive aspects of intuitive theories: their structure, func-
tion, and dynamics. These aspects distinguish the theory theory
from other accounts of conceptual structure and development. We
will recap those points briefly and add ideas inspired by the new
computational and empirical work.

First, theories have a distinctive structure. They involve coher-
ent, abstract, causal representations of the world. Often these
representations include unobservable hidden theoretical entities.
Theories also have a hierarchical structure: theories may describe
specific causal phenomena in a particular domain, but these spe-
cific theories may also be embedded in more abstract “framework
theories.” Framework theories describe, in general terms, the kinds
of entities and relations that apply in a domain, rather than spec-
ifying those entities and relations in detail.

Second, theories have distinctive cognitive functions. They al-
low wide-ranging predictions about what will happen in the future.
They also influence interpretations of the evidence itself. More-
over, theories allow you to make counterfactual inferences—
inferences about what could have happened in the past or, most
significantly, what would happen if you decided to intervene in the
world and do something new in the future. These inferences about
counterfactuals and interventions go beyond simple predictions
about what will happen next and have been a focus of more recent
work.

Finally, theories have distinctive dynamic features. These fea-
tures reflect a powerful interplay between hypotheses and data,
between theory and evidence. In particular, unlike modules or
“core knowledge,” for example, theories change in the light of new
evidence, and they do so in a rational way. Moreover, unlike
associationist structures, for example, theories may change quite
broadly and generally—in their “higher” principles, not just in
their local specific details.

Recent work has revealed several new and significant aspects of
the dynamics of theory change. First, statistical information, in-
formation about the probabilistic contingencies between events,
plays a particularly important role in theory formation both in
science and in childhood. In the last 15 years, developmental
psychologists have discovered the power of early statistical learn-
ing.

Second, psychologists also discovered the power of informal
experimentation. Adults and children themselves act on the world
in ways that reveal its causal structure. In science and in childhood,
experiments lead to theory change. Children learn about causal
structure both through their own interventions on the world, for
example, in exploratory play, and through observing the interven-
tions of others, for example, in imitation and informal pedagogy.

Third, theory change often relies on variability. In the course of
theory change, children gradually change the probability of mul-
tiple hypotheses rather than simply rejecting or accepting a single
hypothesis. Moreover, this process of revision can yield many
intermediate steps. Evidence leads children to gradually revise
their initial hypotheses and slowly replace them with more prob-
able hypotheses. This results in a characteristic series of related
conceptions that forms a bridge from one broad theory to the next.

Developmentalists have charted how children construct and
revise intuitive theories. The theory theory has been most exten-
sively applied to intuitive psychological and biological under-
standing. In infancy and early childhood, children begin to con-
struct intuitive theories of their own minds and those of others
(e.g., Gopnik & Meltzoff, 1997; Gopnik & Wellman, 1994; Well-
man, 1990). Throughout early childhood and well into the school-
age period, they construct and change intuitive theories of the
biological world (Carey, 1985; Gelman, 2003; Inagaki & Hatano,
2002). But there is also work on children’s understanding of the
physical world, starting in infancy and proceeding all the way
through adolescence, (e.g., Baillargeon, 2008; Smith, Wiser, &
Carey, 1985; Vosniadou & Brewer, 1992; Xu, Carey, & Quint,
2004), and recently there has been increasing research on chil-
dren’s intuitive theories of the social world (e.g., Dweck, 1999;
Rhodes & Gelman, in press; Seiver, Gopnik, & Goodman, in
press).

This work has detailed what and when children know about
these crucial domains and has tracked conceptual changes through
childhood. For example, in the case of intuitive psychology or
theory of mind, developmentalists have charted a shift from an
early understanding of emotion and action, to an understanding of
intentions and simple aspects of perception, to an understanding of
knowledge versus ignorance, and finally to a representational and
then an interpretive theory of mind. Similarly, others have traced
successive phases in children’s understanding of intuitive biology
(Gelman, 2003; Inagaki & Hatano, 2002).

Of course, there are controversies about just when various
conceptual and theoretical changes take place, and what they
mean. There is debate about which features of an intuitive biology
emerge in the preschool period (Gelman, 2003) and which only
appear later in middle childhood (Carey, 1985). There are also
debates about infants’ abilities to predict the actions of others and
about how these abilities are related to the understanding of the
mind that emerges at about age 4 (Leslie, 2005; O’Neill, 1996;
Onishi & Baillargeon, 2005; Perner & Ruffman, 2005).
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There has also been special debate about the right way to think
of development in infancy. Some investigators have suggested that
there are initial nontheoretical structures, such as perceptual struc-
tures or core knowledge. These structures only become theoretical,
and so subject to change and revision, later on as a result of the
acquisition of language and the application of analogical reasoning
(Carey, 2009; Spelke & Kinzler, 2007). For others, including us, it
is “theories all the way down”—we think that even newborn
infants may have innate intuitive theories and those theories are
subject to revision even in infancy itself (see, e.g., Woodward &
Needham, 2009). By any standard, though, the theory theory has
been remarkably fruitful in generating research.

However fruitful, the theory theory has suffered from a central
theoretical vagueness. The representations that underpin theories
and the learning mechanisms that underpin theory change have
both been unclear. The fundamental idea of cognitive science is
that the brain is a kind of computer designed by evolution to
perform particular cognitive functions. The promise of develop-
mental cognitive science is that we can discover the computational
processes that underlie development. The theory theory, like Pi-
agetian constructivism itself, has lacked the precision to fulfill this
promise. Crucially, it lacked a convincing computational account
of the learning mechanisms that allow theory change to take place.
The central analogy of the theory is that children’s theories are like
scientific theories. But this analogy was only a first step. Psychol-
ogists need to understand how theory change is possible in prin-
ciple, either in childhood or in science.

Fortunately, recent advances in the philosophy of science and
machine learning have provided a new set of perspectives and
tools that allows developmentalists to characterize theories and,
most significantly, theory change itself. We will refer to these
ideas broadly as the probabilistic models approach, though they
include a number of different types of specific representations and
learning mechanisms. We will give an intuitive and nontechnical
account of how these models work, and, in particular, how they
allow learning and theory change.

Probabilistic models can be applied to many different kinds of
knowledge. But one type of knowledge is particularly relevant for
intuitive theories—namely, causal knowledge. Intuitive theories
are representations of the causal structure of the world. This
distinguishes them from other types of knowledge, such as knowl-
edge of language, space, or number. Probabilistic modeling has led
to some more specific and very fruitful ideas about causal knowl-
edge both in the philosophy of science and in computer science.

We also will emphasize the hierarchical character of these
models. Particularly in recent work, probabilistic models can de-
scribe both specific theories and framework theories and learning
at both local and more abstract levels.

On the empirical side, we will focus on a body of work that has
emerged in the past 10 years and that differs from earlier types of
theory theory research as well as cognitive development research
more generally. This work goes beyond simply charting what
children know and when they know it. One line of research
explores particular causal learning mechanisms. Another line of
research looks in detail at progressive changes in children’s knowl-
edge and the role that variability plays in those changes. We will
interweave reviews of this empirical research with the relevant
computational ideas. But we begin by outlining the basic compu-
tational ideas themselves.

New Theoretical Advances: Probabilistic Models and
Rational Learning

Probabilistic models have come to dominate machine learning
and artificial intelligence over the last 15 years, and they are
increasingly influential in cognitive science (see, e.g., Glymour,
2001; Griffiths, Chater, Kemp, Perfors, & Tenenbaum, 2010;
Oaksford & Chater, 2007). They have also been proposed as a
model for theory-like cognitive development (Gopnik, 2000; Go-
pnik et al., 2004; Gopnik & Tenenbaum, 2007). Two features of
probabilistic models are particularly important for the theory the-
ory. First, they describe structured models that represent hypoth-
eses about how the world works. Second, they describe the prob-
abilistic relations between these models and patterns of evidence in
rigorous ways. As a consequence, they both represent conceptual
structure and allow learning.

Imagine that there is some real structure in the world—a three-
dimensional object, a grammar, or, especially relevant to theories,
a network of causal relationships. That structure gives rise to some
patterns of observable evidence rather than others—a particular set
of retinal images or spoken sentences or statistical contingencies
between events. That spatial or grammatical or causal structure can
be represented mathematically, by a three-dimensional map or tree
structure or a causal graph. You could think of such a representa-
tion as a hypothesis about what the actual structure is like. This
representation will also allow you to mathematically generate
patterns of evidence from that structure. So you can predict the
patterns of evidence that follow from the hypothesis and make new
inferences accordingly. For example, a map or a tree or a causal
graph will let you predict how an object will look from a different
angle, whether a new sentence will be acceptable, or that a new
event will be followed by other events. If the hypothesis is correct,
then these inferences will turn out to be right.

These generative models, then, provide ways of characterizing
our everyday representations of the world and explaining how
those representations allow us to make a wide range of new
inferences. For this reason, a number of cognitive psychologists
have used these representations to describe adult knowledge, in
particular, causal knowledge (Lu, Yuille, Liljeholm, Cheng, &
Holyoak, 2008; Sloman, 2005; Waldmann, Hagmayer, & Blais-
dell, 2006), and these representations have been proposed as a way
to characterize adult intuitive theories (Rehder & Kim, 2006).

From the developmental point of view, though, the really inter-
esting question is not how these representations are used but how
they are learned. Critically, the systematic link between structure
and evidence in these models also allows you to reverse the
process and to make inferences about the nature of the structure
from the evidence it generates. Vision scientists talk about this as
“solving the inverse problem.” In vision, “the inverse problem” is
to infer the nature of three-dimensional objects from the retinal
images they generate. In theory change, the problem is to infer
causal structure from the events you observe. Solving the inverse
problem lets you learn about the world from evidence. It lets you
decide which three-dimensional map or tree or causal graph best
represents the world outside.

The idea that mental models of the structure of the world
generate predictions, and that learners can invert that process to
learn the structure from evidence, is not itself new. It is the basic
model underlying both the cognitive science of vision and of
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language. The big advance has been integrating ideas about prob-
ability into that basic framework. If you think of these mental
models as logical systems with deterministic relations to evidence,
the inverse problem becomes extremely difficult, if not impossible,
to solve, and that has led to nativist conclusions (e.g., Gold, 1967;
Pinker, 1984). Typically a great many hypotheses are, in principle,
compatible with any pattern of evidence, so how can learners
decide on the best hypothesis? Integrating probability theory
makes the learning problem more tractable. Although many hy-
potheses may be compatible with the evidence, some hypotheses
can be more or less likely to have generated the evidence than
others.

There are many ways to solve the inverse problem but one of the
most powerful and general ways is to use Bayesian inference.
Bayesian inference takes off from ideas about probability first
formulated by the Rev. Thomas Bayes in the 18th century and
instantiated in Bayes’ rule. Here is the simplest version of Bayes”
rule. (This will be the only equation in this article, but it is a good
one.)

P(H/E) � [P(E/H) P(H)]

Bayes’ rule is a simple formula for finding the probability that a
hypothesized structure (H) generated the pattern of the evidence
(E) that you see, that is, the probability of H given E, or P(H/E).
That probability is proportional to the probability of the pattern of
evidence given the hypothesis, P(E/H), and your initial estimate of
the probability of the hypothesis, P(H).

Each part of this formula has a conventional name. P(H)is the
prior, the probability of the hypothesis before you looked at the
evidence. P(E/H) is the likelihood, how probable it is that you
would see the observed evidence if the hypothesis were true.
P(H/E) is the posterior—the probability of the hypothesis after
you’ve considered the evidence. Bayes’ rule thus says that the
posterior is a function of the likelihood and the prior.

We can represent a hypothesis as a map, a tree, or a causal
graph, for example. That map or tree or graph will systematically
generate some patterns of evidence rather than others. In other
words, the representation will establish the likelihood—that is, tell
us how likely it is that that hypothesis will generate particular
patterns of evidence. If we know the prior probability of the
hypothesis and then observe a new pattern of evidence, we can use
Bayes’ rule to determine the probability that the hypothesis is true.
So we can decide which map, tree, or graph is most likely to be
correct.

Rather than simply generating a yes-or-no decision about
whether a particular hypothesis is true, the probabilistic Bayesian
learning algorithms consider multiple hypotheses and determine
their posterior probability. Often, in fact usually, there are many
spatial or causal structures or grammars that could, in principle,
produce a particular pattern of visual, causal, or linguistic evi-
dence. The structure is “underdetermined” by the evidence. This is
the “poverty of the stimulus argument” that led Chomsky (2006)
and others to argue for innateness. But while many structures may
be possible, some of those structures are going to be more likely
than others. Bayesian methods give you a way of determining the
probability of the possibilities. They tell you whether some hy-
pothesis is more likely than others given the evidence. So we can
solve the inverse problem in this probabilistic way.

Here is an example: Suppose Mary is travelling, and she wakes
up with a terrible pain in her neck. She considers three possible
hypotheses about what caused the pain: perhaps she has a clogged
carotid artery, perhaps she slept in an awkward position on that
wretched lumpy mattress, or perhaps it was that dubious lobster
she ate last night. She goes to WebMD and discovers that both a
clogged artery and awkward sleeping position are much more
likely to lead to neck aches than bad shellfish—neck aches have a
higher likelihood of occurring given a clogged carotid and awk-
ward sleeping position than they do given ingestion of bad shell-
fish. In fact, Mary reads that clogged carotids always lead to neck
aches—the likelihood of a neck ache given a clogged carotid is
particularly high. Should she panic? Not yet. After all, it is much
less likely to begin with that she has a clogged carotid artery than
that she slept awkwardly or ate bad lobster—awkward sleeping
positions and bad lobsters have a higher prior probability than
severely blocked carotids. If you combined these two factors, the
likelihood and the prior, you would conclude that a bad night on
the lumpy mattress is the most likely hypothesis.

Eventually though, enough evidence could lead you to accept
even an initially very unlikely idea. Sufficient additional evidence
(the ache persists, an X-ray shows blockage) might indeed lead to
the initially unlikely and grim diagnosis of a clogged carotid
artery. This gives Bayesian reasoning a characteristic combination
of stability and flexibility. You will not abandon a very likely
hypothesis right away, but only if enough counter-evidence accu-
mulates.

Probabilistic models were originally articulated as ideal rational
models of learning. Like ideal observer theory in vision (Geisler,
1989), they tell us how a system could learn best, in principle. In
fact, Bayesian inference first emerged in the philosophy of science.
Philosophers wanted to determine how scientists ought to react to
new evidence, not necessarily how they actually did react. How-
ever, the ideal observer theory can help researchers think deeply
about how evolution actually did shape the visual system. In the
same way, probabilistic models can help researchers think deeply
about how evolution shaped human learning capacities. An ideal
learning machine can be compared to the learning machine in the
human skull.

These ideal rational probabilistic models have both attractions
and limitations as theories of the actual representations and learn-
ing mechanisms of cognitive development. One attraction is that,
at least in principle, this kind of inference would allow children to
move from one structured hypothesis to another very different
hypothesis based on patterns of evidence. Children need not
merely fiddle with the details of an innately determined structure
or simply accumulate more and more evidence. They could gen-
uinely learn something new.

Bayesian inference also captures the often gradual and piece-
meal way that development proceeds. Empiricists emphasize this
aspect of development, and it is not easily accommodated by
nativism. At the same time, the generative power of structured
models can help explain the abstract and general character of
children’s inferences. Nativists emphasize this aspect of develop-
ment, and it is not easily accommodated by traditional associa-
tionist empiricism. And the integration of prior knowledge and
new evidence is just what Piaget (1970) had in mind when he
talked about assimilation and accommodation.
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The major drawback of the probabilistic model approach is the
vast space of possible hypotheses and possible evidence. Bayesian
reasoning gives you a way to evaluate particular hypotheses, given
a particular pattern of evidence. However, you still have to decide
which hypotheses to evaluate and, equally, which evidence to
gather. A very large number of hypotheses might be compatible
with some particular pattern of evidence, and a child or a scientist
(or even a computational learning algorithm) will not be able to
enumerate the probability of each one. How do you decide which
hypotheses to test in the first place? The evidence you have is also
always incomplete. How do you decide when and how to collect
new evidence?

In particular, computer scientists talk about the “search prob-
lem”—that is, the problem of checking all the possible hypotheses
against the evidence. There is also a different kind of search
problem, namely, how to search for new evidence that is relevant
to the hypotheses you want to test. As we will see, there are
potential solutions, or at least promising approaches, to both kinds
of search problems.

Bayesian reasoning may be applied to everything from olfactory
perception in the fly to medical decision making in a hospital.
Bayes’ rule, by itself, is very general. In fact, it is too general to
explain much without more information about the hypotheses and
the likelihoods. Here is where the models come in. The probabi-
listic model approaches we emphasize specify the structure of the
hypotheses in a particular domain. They also specify how these
structured hypotheses generate evidence. If we want to character-
ize the theory theory in these terms, we have to find ways to
represent both causal relationships and the patterns of evidence
they generate.

In what follows, we will focus on three recent developments that
are particularly relevant to intuitive theories. First, we will de-
scribe a subcategory of probabilistic models, called causal Bayes
nets, that are particularly relevant to causal knowledge and learn-
ing. We will also show, empirically, that children’s causal learning
can be understood in terms of Bayes nets.

Second, we will discuss some of the learning mechanisms that
are implied by probabilistic causal models, learning mechanisms
that could help solve the problem of deciding which hypotheses to
test and which evidence to consider. We will outline new empirical
evidence that shows that young children learn in a similar way.
One way to learn a causal structure, in particular, is to perform
planned interventions on the world—experiments. Experiments
can not only provide you with more evidence about a causal
structure, they can provide you with evidence that is designed to
eliminate many possible hypotheses and can help you discriminate
between just the most relevant hypotheses. A second way is to
watch the outcomes of the interventions that other people perform,
particularly when those people are knowledgeable teachers.
Watching what others do can further narrow the hypotheses and
evidence you will consider and the inferences you will draw. A
third, complementary learning technique is to rationally sample
just a few hypotheses at a time, testing those hypotheses against
one another. This sampling process leads to distinctive kinds of
learning with characteristic features of variability and progression.

Finally, we will describe the more recently developed hierar-
chical causal models. These hierarchical models can characterize
broader framework theories along with more specific causal rela-

tionships as well as characterize the relations between theories at
different levels of abstraction.

Causal Bayes Nets and the Interventionist Theory of
Causation

To use Bayes’ rule, you have to first determine the elements in
Bayes’ equation: the hypothesis, the evidence, and the likelihood,
that is, the probability of particular patterns of evidence given a
particular hypothesis. So you need to have some formal way of
describing the hypotheses and systematically relating them to
evidence.

Causal hypotheses are particularly important both in science and
in ordinary life. As theory theorists noted 20 years ago, theories
involve coherent and abstract representations of causal relation-
ships. Fortunately, over the last 15 years, computer scientists and
philosophers have developed models of causal relations. These
models are known as causal graphical models or causal Bayes nets
(Pearl, 2000; Spirtes, Glymour, & Scheines, 2000). The models
also have both inspired and been inspired by a particular philo-
sophical view of causation.

What is causation anyway? Theories involve causal relations,
but what makes those relations distinctively causal? Traditionally,
philosophers have approached this problem in several different
ways. David Hume (1739/1973) famously argued that there is no
such thing as causation. Instead, there are simply associations be-
tween events. “Mechanists” like Kant in philosophy and Michotte in
psychology (Leslie & Keeble, 1987; Michotte, 1963) argued that
causal relations involve particular spatiotemporal patterns, such as
contact and launching. Piaget (1930) grounded causation in the im-
mediate consequences of our intentional actions.

Recently, however, the philosopher James Woodward has artic-
ulated and formalized an alternative interventionist account of
causation (Woodward, 2003). The central idea is that if there is a
direct causal relation between A and B, then, other things equal,
intervening to change the probability of A will change the proba-
bility of B. This view of causality is rather different from the
associationist, mechanistic, or Piagetian views that underpin ear-
lier work on the development of causal knowledge. But this
account dovetails with causal Bayes nets; the models also relate
causality to probability and intervention. And, as we will see, the
interventionist idea has particularly interesting implications for
causal development.

Why is the interventionist idea different from the Humean idea
that causation is just correlation? Consider the relation between
nicotine-stained yellow fingers and lung cancer. Yellow fingers
and lung cancer are correlated, and we can predict that if someone
has yellow fingers, that person is more likely to get cancer. But we
do not think that yellow fingers cause cancer. This is reflected in
the fact that we do not believe that intervening to clean someone’s
fingers will make that person any healthier. In contrast, if we
believe that smoking causes cancer, then we will think that chang-
ing the probability of smoking, say in a controlled experiment, will
change the probability of developing lung cancer.

The interventionist account is also different from the mechanis-
tic account. In everyday life, we often make causal claims, even
when we do not know anything about the detailed mechanisms or
spatiotemporal events that underpin those claims (see Keil, 2006).
The interventionist account explains why—we may not know
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exactly how a zipper works, but we know how to intervene to open
or close it.

The interventionist account also suggests why causal relations
are so distinctive and so important: Understanding the causal
structure of the world allows you to imagine ways that you could
do things to change the world and to envision the consequences of
those changes. As we will see, even young children have ideas
about causation that fit this picture, although they may, of course,
also have more mechanistic conceptions as well.

Causal Bayes Nets

Causal Bayes nets were first developed in the philosophy of
science, computer science, and statistics (Glymour, 2001; Pearl,
1988, 2000; Spirtes et al., 2000) Scientists seem to infer theories
about the causal structure of the world from patterns of evidence,
but philosophers of science found it very difficult to explain how
this could be done. Causal Bayes nets provide a kind of logic of
inductive causal inference. Scientists infer causal structure by
performing statistical analyses and doing experiments. They ob-
serve the patterns of conditional probability among variables and
“partial out” some of those variables (as in statistical analysis),
they examine the consequences of interventions (as in experi-
ments), and they combine the two types of evidence. Causal Bayes
nets formalize these kinds of inferences.

In causal Bayes nets, causal hypotheses are represented by
directed graphs like the one in Figure 1. The graphs consist of
variables, representing types of events or states of the world, and
directed edges (arrows), representing the direct causal relations
between those variables. Figure 1 is a graph of the causal structure
of the woes of academic conferences. The variables can be discrete
(like school grade) or continuous (like weight); they can be binary
(like having eyes or not having eyes) or take a range of values (like
color). Similarly, the direct causal relations can have many forms;
they can be deterministic or probabilistic, generative or inhibitory,
linear or nonlinear. The exact specification of these relations is
called the parameterization of the graph.

Causal Structure and Conditional Probabilities

The Bayes net formalism specifies systematic connections be-
tween the causal hypotheses that are represented by the graphs and
particular patterns of evidence. To begin with, the structure of the
causal graph itself puts some very general constraints on the
patterns of probability among the variables. If we make further

assumptions about the parameterization of the graph, that is, about
the particular nature of the causal relations, we can constrain the
kinds of inferences we make still further. For example, we might
assume that each cause independently has a certain power to bring
about an effect. This is a common assumption in studies of human
causal learning. Or we might even know the exact probability of
one event given another event, for example, that there is a 70%
chance that A will cause B. Or we might know that the evidence we
see is a random sample of all the evidence or instead that it is a
sample that is biased in some particular way. Each of these kinds
of knowledge can influence our causal inferences.

So, given a particular causal structure and parameterization,
only some patterns of probability will occur among the variables.
From the Bayesian perspective, the graph specifies the likelihood
of the evidence given the hypothesis.

To illustrate how this works consider a simple causal problem,
partially embedded in the graph of Figure 1. Suppose that John
notices that he often cannot sleep when he has been to a party and
drunk lots of wine. Partying (P) and insomnia (I) covary, and so do
wine (W) and insomnia (I). Suppose also that John makes some
general assumptions about how these variables are likely to be
related (the parameterization of the graph). For example, he as-
sumes that partying or wine will increase the probability of insom-
nia, rather than decreasing it, and similarly, that partying will
increase the probability of drinking wine. This contrasts with the
assumption, say, that wine or partying absolutely determines
John’s insomnia or prevents his insomnia.

There are at least two possibilities about the relations among
these variables. Maybe parties cause John to drink wine, and that
keeps him awake (a causal chain). Maybe parties are so exciting
that they keep John awake, and they also independently cause him
to drink wine (a common cause). As shown in Figure 2, these
possibilities can be represented by two simple causal graphs that
include variables like P� and I� but also specify the nature of the
relations between them.

In these graphs, P�, for example, conveys that (to keep things
simple) partying can be present (�) or absent (�). P�3I� con-
veys the fact that partying and insomnia are causally related, and
P�3I� conveys the more specific hypothesis that more partying
leads to more insomnia. So, maybe parties (P�) lead John to drink
(W�) and wine keeps him up (I�), or maybe partying (P�) both
keeps John up (I�) and leads him to drink (W�). The covariation
among the variables by itself is consistent with both these struc-
tures.

However, these two graphs lead to different patterns of condi-
tional probability among the three variables or, as statisticians put
it, different relations between some variables when other variables
are partialed out. Suppose you decide to keep track of all the times
you drink and party and examine the effects on your insomnia. If
the Graph 2a in Figure 2 is correct, then you should predict that
you will be more likely to have insomnia when you drink wine,
whether or not you party. If, instead, the Graph 2b in Figure 2 is
correct, you will only be more likely to have insomnia when you
go to a party, regardless of how much or how little wine you drink.

If John knows whether the causal structure of his insomnia is
represented by the Graph 2a or Graph 2b in Figure 2, and he knows
the values of some of the variables in the graph (� or �), he can
make consistent and quite general predictions about the probability
of other variables. In Bayesian terms, each graph shows the like-

Figure 1. Causal Bayes net of academic conferences (and their conse-
quences). Causal Bayes nets can connect any variables with connected
edges. In this example, A � attending a conference; P � partying; W �
drinking wine; I � insomnia; D � depression; M � mania.
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lihood of particular patterns of evidence given that particular
hypothesis about the causal structure. These predictions can be
very wide-ranging—a simple graph with just a few nodes can
generate predictions about a great many possible combinations of
events. But causal Bayes nets do more than just allow us to predict
the probability of events. They allow us to make more sophisti-
cated causal inferences too.

Bayes Nets and Interventions

Why think of these graphs as representations of causal relations
among variables? Here is where the interventionist account of
causation comes in. According to the interventionist account, when
X directly causes Y, intervening to change the probability of X
should change the probability of Y (other things being equal).
Causal Bayes net algorithms allow us to determine what will
happen to Y when we intervene on X.

Predictions about observations may be quite different from
predictions about interventions. For example, in a common cause
structure like Graph 2b in Figure 2, we will be able to predict
something about the value of insomnia from the value of wine. If
that structure is the correct one, knowing that someone drank wine
will indeed lead one to predict that that person is more likely to
have insomnia (since drinking wine is correlated with partying,
which leads to insomnia). But intervening on that person’s wine
drinking—forbidding him from drinking, for example—will have
no effect on his insomnia. Only intervening on his partying will do
that.

In causal Bayes nets, interventions systematically alter the na-
ture of the graph on which they intervene. In particular, an inter-
vention fixes the value of a variable, and in doing so, it eliminates
the causal influence of other variables on that variable. If John
simply decides to stop drinking wine, that means that, no matter
what, the wine variable will be set to minus (i.e., W�), so partying
will no longer have any effect. This can be represented by replac-
ing the original graph with an altered graph in which the specific
value of some variable is fixed. As a result, the arrows directed
into the intervened-upon variable will be eliminated (Judea Pearl
vividly refers to this process as “graph surgery”; Pearl, 2000). The
conditional probabilities among the variables after the intervention
can be read off from this altered graph.

Suppose, for example, John wants to know the best thing to do
to prevent insomnia. Should he quit partying (intervening to make
P�) or quit drinking (intervening to make W�)? He could calculate
the effects of such interventions on the various causal structures,
using graph surgery to see what the consequences of the interven-
tion will be. The altered graphs in Figure 3, for example, show the
same graphs as before but now with an intervention (shown as a
firmly grasping fist) on the variable P or the variable W that sets
it to a particular value.

If Graph 2a from Figure 2 is right, and John eliminates partying
(set P to P�) but continues to drink, then when he drinks, he will
have insomnia (W�3I�), but when he does not drink, he will not
(W�3I�). But if he eliminates drinking (sets W to W�), he will
never have insomnia (I�). These are the possibilities shown in
Figure 3a. If Graph 2b (from Figure 2) is right, however, if John
eliminates drinking but still parties, then when he parties (P�), he
will have insomnia (I�), and when he does not party (P�), he will
not (I�). But if he eliminates partying, then he will eliminate
insomnia too (P�3I�). These are the possibilities shown in Fig-
ure 3b. So, if Graph 2a is right, John should party sober, but if
Graph 2b is right, he should drink at home.

Causal Bayes nets allow us to go back and forth freely from
evidence about observed probabilities to inferences about inter-
ventions and vice versa. That is what makes them causal. They
allow us to take a particular causal structure and use it to predict
the conditional probabilities of events and also the consequences
of interventions on those events.

We can also use exactly the same formal apparatus to generate
counterfactual predictions. Counterfactuals are formally the same
as interventions. Instead of saying what should happen when we
make the world different by fixing the value of a variable, we can
say what would have happened if that variable had been different
than it was. The same reasoning that tells John that he should stop
drinking to avoid insomnia can tell him that if he had only stopped
drinking many years ago, he would have avoided all those sleep-
less nights.

So Bayes nets capture some of the basic structural and func-
tional features of theories. They describe abstract coherent net-
works of causal relationships in a way that allows predictions,
interventions, and counterfactual reasoning.

Bayes Nets and Learning

We just saw that knowing the causal structure lets us make the
right predictions about interventions and observations. We can
determine the pattern of evidence a particular hypothesis will
generate. This lets us calculate the likelihood of a particular pattern
of evidence given a particular hypothesis. But we can also use
Bayes nets to solve the crucial inverse problem. We can learn the
causal structure by observing the outcomes of interventions and
the conditional probabilities of events.

Figure 2. Simple causal graphs of two alternative causal relations be-
tween partying (P), drinking wine (W), and insomnia (I).

Figure 3. Altered graphs showing the results of interventions on Graphs
2a and 2b (from Figure 2) under two different interventions: eliminating
partying or eliminating wine. A � attending a conference; P � partying;
W � drinking wine; I � insomnia.
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Let us go back to the wine–insomnia example. How could John
tell which hypothesis about the insomnia is the right one? The
Graphs 2a and 2b represent two different causal hypotheses about
the world. He could distinguish between the graphs either by
intervention or by observation. First, he could do an experiment.
He could hold partying constant (always partying or never party-
ing) and intervene to vary whether or not he drank wine; or he
could hold drinking constant (always drinking or never drinking)
and intervene to vary whether or not he partied. This reasoning
underlies the logic of experimental design in science.

He could also, however, simply observe the relative frequencies
of the three events. If he notices that he is more likely to have
insomnia when he drinks wine, whether or not he parties, he can
infer that Graph 2a is correct. If he observes that, regardless of how
much or how little wine he drinks, he is more likely to have
insomnia only when he attends a party, he will opt instead for
Graph 2b. These inferences reflect the logic of correlational sta-
tistics in science. In effect, as we noted earlier, what John did was
to partial out the effects of partying on the wine–insomnia corre-
lation and draw a causal conclusion as a result.

It is not only theoretically possible to infer complex causal
structure from patterns of conditional probability and intervention
(Glymour & Cooper, 1999; Spirtes et al., 2000). It can actually be
done. Computationally tractable learning algorithms have been
designed to accomplish this task and have been extensively applied
in a range of disciplines (e.g., Ramsey, Gazis, Roush, Spirtes, &
Glymour, 2002; Shipley, 2000). In some cases, it is also possible
to accurately infer the existence of new previously unobserved
variables (Richardson & Spirtes, 2002; Silva, Scheines, Glymour,
& Spirtes, 2003; Spirtes et al. 1995).

Causal Bayes nets are particularly well suited to Bayesian
learning techniques (Griffiths & Tenenbaum, 2007; Heckerman,
Meek, & Cooper, 1999). Bayesian graphical networks allow us to
easily determine the likelihood of patterns of evidence given a
causal hypothesis. Then we can use Bayesian learning methods to
combine this likelihood with the evidence and the prior probability
of the hypothesis. We can infer the probability of particular graphs
from a particular pattern of contingencies among variables or from
the outcome of some set of controlled experiments.

We will say more later about probabilistic Bayesian models and,
in particular, hierarchical models. But let us begin by showing how
the ideas we have described so far apply to empirical research with
children.

Empirical Work on Bayes Nets and Bayesian
Reasoning in Children

Over the past 10 years, a number of researchers have explored
whether children might have Bayes net–like representations of
causal structure and whether they can learn causal structure from
evidence in the way that the formalism suggests. We know that
even infants can detect complex statistical patterns. In fact, statis-
tical learning has been one of the most important recent areas of
developmental research on linguistic and perceptual learning (e.g.,
Gòmez, 2002; Kirkham, Slemmer, & Johnson, 2002; Saffran,
Aslin, & Newport, 1996; Wu, Gopnik, Richardson, & Kirkham,
2011). This research shows that even young infants are sensitive to
some of the statistical regularities in the data that would be
necessary to engage in Bayesian causal learning at all.

But more recent research goes further. It demonstrates that very
young children, even infants, can actually use those statistics to
make inferences about causal structure. Researchers have also
explored whether children use that knowledge in ways that go
beyond simple association. And they have explored whether chil-
dren can make similar causal inferences from the outcomes of
interventions—their own or those of others. Finally, they have also
asked whether children will integrate their prior knowledge with
new evidence in a Bayesian way and whether they will go beyond
learning about observable variables to posit unobservable ones.
The quick answer to all these questions is yes.

The methodology of all these experiments has been similar.
Obviously, it is not possible to explicitly ask very young children
about conditional probabilities or interventions. Indeed, the judg-
ment and decision-making literature has demonstrated that even
adults have a great deal of difficulty with explicit and conscious
probabilistic reasoning (see, e.g., Kahneman & Tversky, 1996). On
the other hand, there is evidence that human minds unconsciously
use Bayesian inference extensively in areas like vision and motor
control (Kersten, Mamassian, & Yuille, 2004; Wolpert, 2007). We
can ask whether children might also implicitly use these inference
techniques to develop intuitive theories.

Researchers studying intuitive theories have usually tried to
discover a typical child’s knowledge of familiar causal general-
izations and to track changes in that knowledge as children grow
older. They can ask whether children of a particular age understand
important causal relationships within domains such as psychology,
biology, and physics. But for researchers to understand the funda-
mental mechanisms of causal learning, they also need to give
children causal problems that they have not already solved. So
researchers have given children controlled evidence about new
causal systems to see what kinds of causal conclusions they will
draw.

Causal Learning in Young Children

Learning causality from probability. The Bayes net ap-
proach to causation suggests that children might be able to go
beyond learning the immediate consequences of their actions, as
Piaget (1930) suggested, associating correlated events, as the clas-
sical associationist or connectionist accounts suggest (Rogers &
McLelland, 2004) or understanding specific physical events that
involve contact and movement (Leslie & Keeble, 1987; Michotte,
1963). Instead, children might be able to learn new causal structure
from patterns of probability. Moreover, according to the interven-
tionist account of causation, children should be able to use that
structure to design new interventions on the world. In a first set of
experiments, Gopnik, Sobel, Schulz, and Glymour (2001) showed
just that. Children saw a “blicket detector”—a machine that lit up
and played music when some combinations of objects, but not
others, were placed on it, as depicted in Figure 4. For example,
children might see that the machine did not activate when B alone
was placed on it but did activate when A was placed on it and
continued to do so when B was added to A (as in Figure 4). Given
prior knowledge about the machine, it could have any one of the
causal structures represented by the Bayes nets at the bottom of
Figure 4. However, according to the formalism, the pattern of
evidence is only compatible with the first structure where A is a
blicket and B is not.
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Then children were asked to design an intervention to make the
machine go or turn off. If the causal structure is that illustrated in
the top left of the possibilities in Figure 4, a child should intervene
on A, and not B, to make the machine stop. Children who were 2,
3, and 4 years old could use the pattern of covariation between the
blocks and the machine’s activation to infer the causal structure of
the machine. Then they could use that causal knowledge to figure
out how to make the machine go or stop. They would add only A,
and not B or A and B, to make the detector activate. They would
remove only A, and not B or A and B, to make the machine stop.
Gweon and Schulz (2011) found similar abilities to infer causation
from covariation in infants as young as 16 months.

Sobel, Tenenbaum, and Gopnik (2004) found that preschool
children also would make correct causal inferences from more
complex statistical patterns, particularly backward blocking. Back-
ward blocking is a kind of causal inference that requires children
to learn about the causal efficacy of an object using information
from trials in which that object never appeared. For example,
children saw A activate the machine by itself and then saw A and
B together activate the machine. The fact that A alone was suffi-
cient to activate the machine made the children think that B was
less likely to be a blicket.

There are two interesting points about this inference. First,
unlike the inference in our first example, it is probabilistic. B could
still be a blicket, but this hypothesis is less likely if A activated the
machine. Second, this inference is particularly difficult to explain
with standard associationist theories. Sobel and Kirkham (2007)
found that children as young as 18 months also showed similar
capacities for backward blocking. They also found that, in an
anticipatory-looking task, even 9-month-olds seemed to infer cau-
sation from covariation.

Children can also infer more complicated kinds of causal struc-
ture. Gopnik et al. (2004) showed that children could use a com-
bination of interventions and statistics to infer the direction of a
causal relation, that is, whether A caused B or vice versa. Still
further, Schulz, Gopnik, and Glymour (2007) showed that 4-year-
old children could use this kind of evidence to infer more complex

causal structures involving three variables. In these experiments,
they distinguished between a causal chain, where A causes B
causes C (as in Graph 2a earlier) and a common cause structure,
where A causes B and C (as in Graph 2b earlier).

In these examples, the causal relations were complex but deter-
ministic. Kushnir and Gopnik (2005) showed that 4-year-old chil-
dren could also make inferences about probabilistic relationships.
Children could use probabilistic strength to infer causal strength—
they thought that a block that set off the machine two of three
times was more effective than one that worked two of six times
(although both set off the machine two times).

Integrating prior knowledge and new evidence. Bayesian
inference combines evidence, likelihoods, and the prior probability
of hypotheses. Do children take prior knowledge into account in a
Bayesian way when they are making causal inferences? Several
recent studies show that they do, but that, also in a Bayesian way,
new evidence can lead them to overturn an initially likely hypoth-
esis. Thus, Sobel, Tenenbaum, and Gopnik (2004) and Griffiths,
Sobel, Tenenbaum, and Gopnik (2011) showed that children
would take the baseline frequency of blickets into account when
they made new inferences in a backwards blocking task. They
made different inferences when they were told beforehand that
blickets were rare or common. If blickets were said to be rare, for
example, children were less likely to conclude that a block was a
blicket than if blickets were said to be common.

Kushnir and Gopnik (2007) explored how children integrated
prior knowledge about spatiotemporal causal relationships with
new evidence. To begin with, children clearly preferred a hypoth-
esis about a blicket machine that involved contact, as we might
expect from perceptual or mechanistic accounts of causality (e.g.,
Leslie & Keeble, 1987; Muentener & Carey, 2010). They assumed
that a block would have to touch the blicket detector to make it go.
However, children overcame that prior assumption when they were
presented with statistical evidence that blickets could act remotely,
without contact. When they saw that the machine was most likely
to activate when an object was waved above it, rather than touch-
ing it, they concluded that contact was unnecessary.

Figure 4. Example of a blicket detector and a sequence of events that do and do not activate the detector. These
events allow for four different causal interpretations, presented in abbreviated Bayes net form at the bottom of
the figure.
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Other studies show the influence of prior knowledge on causal
learning. In particular, Schulz and Gopnik (2004) and Schulz,
Gopnik, and Glymour (2007) explored whether children believe
that causal relations can cross domains—that, for example, a
physical cause could lead to a psychological effect or vice versa.
Many studies suggest that children are initially reluctant to con-
sider such hypotheses—they have a very low prior probability
(e.g., Notaro, Gelman, & Zimmerman, 2001). However, Schulz
and Gopnik (2004) showed that 4-year olds would use statistical
information to learn about cross-domain causal relations. For ex-
ample, children initially judged that talking to a machine would not
make it go. But if they saw the appropriate conditional probabil-
ities between talking and activation, they became more willing to
consider the cross-domain cause. Schulz et al. (2007) then gradu-
ally gave children more and more statistical evidence supporting a
cross-domain hypothesis. This systematically shifted children’s
inferences in precisely the way a Bayesian model would predict.
As children got more and more evidence in favor of the hypothesis,
they were more and more likely to accept it. These cross-domain
inferences are a good example of an initially low probability
hypothesis that may be confirmed by the right pattern of evidence.

Unobserved causes. Children do not just use statistical pat-
terns to infer observed causal relations, like the fact that the blicket
could light up the detector. They also use conditional probabilities
to infer the existence of unobserved causes—hidden “theoretical
entities.” Gopnik et al. (2004) found that when the observed
variables could not explain the evidence, children would look for
unobserved variables instead. Children saw two simple stick pup-
pets, which we will call W and I, that moved and stopped togeth-
er—they covaried, like wine and insomnia in Figure 2. This pattern
of covariation indicated that there was some causal link between
the two events but did not specify exactly what causal structure led
to that link. Then children saw the experimenter intervene to move
W, with no effect on I, and, vice versa, intervene to move I with no
effect on W. These two interventions ruled out the two obvious
causal hypotheses W3I and I3W. Then children were asked if W
made I move, I made W move, or something else made them both
move. They chose “something else” as the right answer in this
condition but not in a similar control condition. Moreover, many of
the children searched for the unobserved cause, looking behind the
puppet apparatus. So 4-year-olds had concluded that some unob-
served common cause, U, influenced W and I, and therefore
W4U3I. Similarly, Schulz and Somerville (2006) found that
when children saw an indeterministic machine—that is, a machine
that went off only two of six times—they inferred that some
hidden variable was responsible for the failures.

Inferring psychological causation. Most of these initial ex-
periments involved physical causation. However, children also
extend these causal learning techniques to other domains. Schulz
and Gopnik (2004) found that 4-year-old children used covariation
to infer psychological and biological causes as well as physical
ones. In a particularly striking experiment, Kushnir, Xu, and
Wellman (2010) found that children as young as 20 months would
use statistical Bayesian reasoning to infer the desires of another
person.

To set the stage, recall that a causal model does not just specify
causal structure—it can also specify the relations between the
causal structure (including the parameterization of that structure)
and the evidence. The default assumption for many causal models,

including the models typically used in science, is that the evidence
we see is a random sample from an underlying distribution. When
the evidence does not fit that pattern, we either have to revise our
assumptions about the causal structure or revise our assumptions
about the sampling process. This is the logic behind significance
tests. When there is less than a 5% chance that the pattern of
evidence we see was the result of a random sampling process, we
infer that there is some additional causal factor at work.

To begin with, Xu and Garcia (2009) demonstrated that
9-month-olds were sensitive to sampling patterns. The experi-
menter showed the infants a box full of white and red ping-pong
balls, in an 80:20 proportion. Then she took some balls from the
box. A natural causal model would be that this sample was
randomly generated. In that case, the distribution of balls in the
sample should match the distribution of the balls in the box.
Indeed, infants looked longer when a sample of mostly red balls
was taken from a box of mostly white balls than when a sample of
mostly white balls was extracted. These infants initially seemed to
assume that the balls were a random sample from the distribution
in the box.

This result is interesting for several reasons. For one thing,
notice that the violations of expectancy were not impossible—after
all, the experimenter could have pulled mostly white balls from a
box of mostly red balls—but merely improbable. Infants appeared
to be sensitive to the probability of different outcomes. It is as if
the infants said to themselves, “Aha! There is less than .05 prob-
ability that this occurred by chance!” But would the surprising
evidence drive the children to another causal model?

Going one step further, Kushnir et al. (2010) found that, in fact,
20-month-olds interpreted this nonrandom sampling causally and
psychologically. An experimenter took toy frogs from a box con-
taining almost all toy ducks, or she took toy frogs from a box
containing almost all toy frogs. Then she left the room, and another
experimenter gave the child a small bowl of frogs and a separate
bowl of ducks. When the original experimenter returned, she
extended her hand ambiguously between the bowls. The children
could give her either a frog or a duck. When she had taken frogs
out of the box that was almost all ducks, children gave her a frog.
In this case, the infants concluded that she wanted frogs. In
contrast, when she had taken frogs from a box of almost all frogs,
the children were equally likely to give her a frog or a duck. In this
case, the children concluded that she had merely drawn a random
sample from the box, rather than displaying a preference for frogs.
So these 20-month-old infants had inferred an underlying mental
state—a desire—from a statistical pattern.

In a still later study, Ma and Xu (2011) showed that both
2-year-olds and 16-month-olds would use nonrandom sampling to
learn that an adult’s desires might differ from their own. This is
especially interesting because in an earlier theory-of-mind study,
Repacholi and Gopnik (1997) demonstrated that 18-month-olds
could spontaneously appreciate the fact that their own desires
differed from the desires of others, but 15-month-olds could not.

Seiver, Gopnik, and Goodman (in press) showed that children
could make particularly complex inferences about covariation with
probabilistic data in a social setting. Four-year-olds saw that an
action probabilistically covaried either with a person or with a
situation (e.g., Sally plays on a trampoline rather than a bicycle
three out of four times, while Josie plays on it only one out of four
times, or in a contrast condition, Sally and Josie both play on the
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trampoline three quarters of the time but only play on the bicycle
one quarter of the time.) Four-year-olds correctly inferred that the
action was caused by a feature of the person in the first case but by
a feature of the toy in the second. Moreover, in this study, 4-year-
olds explained the “person-caused” patterns of probabilistic cova-
riation by inferring consistent and long-lasting personal traits and
used those traits to predict future patterns of behavior. This finding
is striking because these kinds of attributions reflect an intuitive
theory of traits that usually emerges later in middle childhood (cf.
Dweck, 1999). When children receive the appropriate evidence,
however, they are able to make such inferences even at a much
earlier age.

Both this study and the Ma and Xu (2011) study of desires are
also interesting because they show that these learning mechanisms
can help explain the naturally occurring changes in children’s
theory of mind that were the focus of earlier work. Children not
only make correct inferences in an artificial setting like the blicket
detector experiment, they do so in more everyday settings. In such
situations, the data can drive children toward a theory change that
occurs in normal development.

Dynamic Features of Theories

To sum up so far, probabilistic models can provide a formal
account of both the structure and function of specific intuitive
theories. They can represent complex causal hypotheses mathe-
matically. They can also explain mathematically how those hy-
potheses can generate new predictions, including probabilistic
inferences, counterfactual claims, and prescriptions for interven-
tions. The Bayesian interaction between prior knowledge and
current evidence can also help explain the interpretive function of
theories, the way they lead humans to interpret and not just record
new data. In the Bayesian view, prior knowledge shapes the
inferences drawn from new data, as Piaget (1926, 1930) pointed
out long ago. Moreover, as we have just seen, children as young as
16 months can actually make these kinds of inferences, and by the
time children reach age 4, these inferences are both ubiquitous and
sophisticated.

These results also tell us something about the dynamics of
theory change—about learning. They show that children are learn-
ing about causal structure in a normatively correct way—given the
right evidence, they draw appropriate causal conclusions. But we
can also ask more deeply about the specific learning processes that
are involved in theory change. In some ways, this is the most
interesting question for developmentalists. How do children re-
solve the search problems we described earlier? How do they
decide which hypotheses to test, and which evidence to use to test
them? Here also new empirical work and new computational
insights dovetail. We will describe three different ways children
could hone in on the correct hypotheses and the best evidence.
They can act themselves, performing informative experiments.
They can watch and learn from the actions of others, particularly
actions that have a pedagogical purpose. And they can use sam-
pling techniques.

Learning from interventions: Exploration, experimentation,
and play. One of the insights of the causal models approach is
that deliberately intervening on the world—and observing the
outcomes of those interventions—is a particularly good way to
figure out the causal structure of the world. The framework for-

mally explains the scientific intuition that experiments tell you
more about causal relationships than simple observations do. In
particular, the philosopher of science Frederick Eberhardt has
mathematically explored how interventions allow you to infer
causal structure from data (Eberhardt & Scheines, 2007; see also
Cook, Goodman, & Schulz, 2011).

It turns out that by intervening yourself, you can rapidly get the
right evidence to eliminate many possible hypotheses and to nar-
row your search through the remaining hypotheses. A less obvious,
but even more intriguing, result is that these interventions need not
be the systematic, carefully controlled experiments of science. The
formal work shows that even less controlled interventions on the
world can be extremely informative about causal structure. Mul-
tiple simultaneous interventions can be as effective as intervening
on just one variable at a time. “Soft” interventions, where the
experimenter simply alters the value of a variable can be as
effective as more controlled interventions, where the experimenter
completely fixes that value. What scientists disparagingly call a
“fishing expedition” can still tell us a great deal about causal
structure—you do not necessarily need the full apparatus of a
randomized controlled trial.

These ideas have led to a renewed and reshaped investigation of
children’s play. Anyone who watches young children has seen how
they ceaselessly fiddle with things and observe the results. Chil-
dren’s play can look like informal experimentation. Indeed, his-
torically, Piaget, Montessori, Bruner, and most preschool teachers
have agreed that children learn through play (see Hirsh-Pasek &
Golinkoff, 2003; Lillard, 2005). But, how could this be, given the
equally convincing observation that children’s play is often just
that—playful—that is, undirected and unsystematic? In fact, other
research demonstrates that even older children and naı̈ve adults are
bad at explicitly designing causally informative experiments (Chen
& Klahr, 1999; Kuhn, 1962). If children’s playful explorations are
so unconstrained, how could they actually lead to rational causal
learning?

Recent research by Schulz (Bonawitz et al., 2011; Cook et al.,
2011; Schulz et al., 2007; Schulz, Standing, & Bonawitz, 2008; see
also Legare, 2012) has begun to address this issue. Schulz and her
colleagues have shown that children’s exploratory play involves a
kind of intuitive experimentation. Children’s play is not as struc-
tured as the ideal experiments of institutional science. Neverthe-
less, play is sufficiently systematic so that, like scientific fishing
expeditions, it can help children discover causal structure. This
research also shows that children do not just draw the correct
conclusions from the evidence they are given—they actively seek
out such evidence.

In an illustrative series of experiments Schulz and Bonawitz
(2007) assessed how preschool children explored a new “jack-in-
the-box” type of toy. The toy had two levers that produced two
effects (a duck and/or a puppet could pop up). Crucially, Schulz
and Bonawitz compared two conditions, one where the causal
structure of the toy was ambiguous and one where it was clear. In
the confounded condition, an adult and the child pushed both
levers simultaneously, and both effects appeared. With this dem-
onstration, it was completely unclear how the toy worked. Maybe
one lever produced the duck, and the other produced the puppet,
maybe one lever produced both effects, maybe both levers pro-
duced both effects, and so on. In the unconfounded condition, on
the other hand, the adult pushed one lever, and it systematically
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produced a single effect, and then the child pushed the other lever,
which systematically produced the other effect. In this uncon-
founded condition, the causal structure of the toy was clear.

The experimenter placed this “old” toy and a new, simpler,
single-lever toy in front of the child. Then she left the child alone,
free to play with either toy. If children’s play is driven by a desire
to understand causal structure, then they should behave differently
in the two conditions. In the confounded condition, they should be
especially likely to explore the “old” toy. In that condition, the old
toy’s causal structure is unclear, and further intervention could
help reveal it. In the unconfounded condition, however, interven-
tions will have no further benefit, and so children should play with
the new toy instead. Indeed, 3- and 4-year-old children systemat-
ically explored the old toy rather than the new one in the con-
founded condition but not the unconfounded one. Moreover, after
they had finished exploring the toy, children in the confounded
condition showed that they had figured out how the toy worked. In
a second study (Cook et al., 2011), children showed an even more
sophisticated implicit ability to determine which experiments
would be most informative, given their background knowledge of
the causal context.

So when young children were given a causally puzzling toy to
play with, they spontaneously produced interventions on that toy,
and they did this in a rational way. Of course, children’s play is not
rational in the sense that it is explicitly designed to be an optimally
effective experiment. But children’s actions ensure that they re-
ceive causally relevant and informative evidence. Once that evi-
dence is generated through play, children can use it to make the
right causal inferences.

This research is not only intriguing in itself. It also shows how
research inspired by probabilistic models can shed light on classic
developmental questions.

Learning from interventions: Imitation, observation and
pedagogy. So we can learn about causation by experimenting
ourselves. But we can also learn about causation by watching what
other people do, and what happens as a result. At times other
people even try to demonstrate causal relations and to teach
children about what causes what. This kind of observational causal
learning goes beyond simple imitation. It is not just a matter of
mimicking the actions of others, instead children can learn some-
thing new about how those actions lead to effects. In fact, a
number of experiments suggest that, at least by age 4, children can
use information about the interventions of others in sophisticated
ways to learn new causal relationships (e.g., Buchsbaum, Gopnik,
& Griffiths, 2011; Gopnik et al., 2004; Schulz et al., 2007). For
example, by age 4 and perhaps earlier, children can distinguish
confounded and unconfounded interventions and recognize that
confounded interventions may not be causally informative (Kush-
nir & Gopnik, 2005). In more recent experiments, Buchsbaum et
al. (2011) showed that 4-year-olds would use statistical informa-
tion to infer meaningful, causally effective goal-directed actions
from a stream of movements. In an imitation task, children saw an
experimenter perform five different sequences of three actions on
a toy, which activated or did not activate on each trial. A statistical
analysis of the data would suggest that only the last two actions of
the three were necessary to activate the toy. When children got the
toy, they often produced just the two relevant actions, rather than
imitating everything that the experimenter did.

Further studies have shown that while children often observe
correlational information, they apparently privilege some of those
correlations over others. In particular, recent findings suggest that
very young children act as if correlations that result from the direct
actions of others are especially causally informative.

Bonawitz et al. (2010) showed 4-year-olds and 2-year-olds
simple correlations between two events that were not the outcome
of human action. One box would spontaneously move and collide
with a second box several times. Each time the second box would
light up, and then a toy plane a few inches away would spin. No
human action was involved. Then they asked the children to make
the plane spin themselves. The obvious course is to push the first
box against the second. Four-year-olds would do this spontane-
ously, and they would also look toward the plane as soon as they
did so. Interestingly, however, 2-year-olds were strikingly unlikely
to spontaneously move the box in order to make the plane go.
Although they would happily move the box if they were specifi-
cally asked to do so, even then they did not look toward the plane
and anticipate the result. However, these younger children were
much more likely to act themselves and to anticipate the result
when they observed a human agent bring about exactly the same
events. That is, when they saw an experimenter push the first block
against the second and then saw the plane spin, 2-year-olds would
both push the block themselves and anticipate the result. Using
different stimuli and additional controls, Meltzoff, Waismeyer, and
Gopnik (2012) compared 24-month-olds, 3-year olds, and 4-year-
olds and obtained similar results—younger children were more
likely to make causal inferences from correlations when the cor-
relations were the result of human actions.

Intriguingly, children can learn even more effectively from other
people by making implicit assumptions about the intentions of
those people. In particular, children appear to be sensitive to the
fact that evidence may be the result of pedagogy—the intention to
teach. Recently, Csibra and Gergeley (2006) have suggested that
even infants are sensitive to pedagogy and make different infer-
ences when evidence comes from a teacher. For Csibra and Gerge-
ley, this is the result of an innate set of cues pointing to pedagog-
ical intent, such as the use of “motherese” and eye contact, which
automatically lead children to make particular kinds of inferences.

Alternatively, however, pedagogy might have an effect by lead-
ing children to assume different kinds of probabilistic models.
Shafto and Goodman (2008) have modeled these inferences in
Bayesian terms, and have made quite precise predictions about
how learners should make rational causal inferences from peda-
gogical and nonpedagogical evidence. Four-year-olds act in accord
with those predictions (Buchsbaum et al., 2011; Bonawitz et al.,
2011).

The central idea behind the Bayesian pedagogical models is that
children not only model the causal structure of the world, they also
model the mind of the person teaching them about the world.
Remember that causal models can specify how evidence is sam-
pled. When the 20-month-olds in Kushnir et al.’s (2010) frog-and-
duck study saw a nonrandom sample, they inferred that the agent
deliberately intended to pick the frogs. This can also work in
reverse—you can use what you know about someone’s intentions
to make inferences about how the evidence was sampled. In
particular, if one person is trying to teach another, the “teacher”
should provide an informative sample, rather than a random one.
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So if a “learner” knows that he or she is being taught, the learner
can assume that the sample is informative.

For example, suppose a person shakes up novel toys in a bag,
blindly extracts a few, and labels each with a novel name “dax.”
Contrast this action with the case where instead the person looks
inside and deliberately extracts exactly the same toys, shows you
each one, and labels it a “dax.” This second case provides peda-
gogical evidence. You can assume the teacher drew the sample
nonrandomly to instruct you about these toys, in particular. As a
result, you can make different inferences about the word and the
objects. Specifically, in the second case, you can assume that the
word is more likely to apply only to the sampled toys than to all
the toys in the bag, or that all the sampled toys will behave in the
same way, while the toys that were not sampled will behave
differently. Even infants make these inferences (Gweon, Tenen-
baum, & Schulz, 2010; Xu & Tenenbaum, 2007).

In general, implicit pedagogy is an enormous asset for learning.
It allows children to focus on just the hypotheses and evidence that
are most relevant and significant for their culture and community.
On the other hand, implicit pedagogy also has disadvantages. It
may lead children to ignore some causal hypotheses. Bonawitz et
al. (2011) showed children a toy that could behave in many
different and nonobvious ways (pressing a button could make it
beep, squeezing a bulb made it light up, and so forth). When a
demonstrator said that she was showing the child how the toy
worked, children would simply imitate the action she performed.
When the demonstrator activated the toy accidentally, children
would explore the toy and discover its other causal properties.

Research on “overimitation” also illustrates this effect. In these
studies, children see another person act on the world in a compli-
cated way to bring about an effect. Sometimes in these circum-
stances, children act rationally, reproducing the most causally
effective action (Gergeley, Bekkering, & Király, 2002; Southgate,
Chevallier, & Csibra, 2009; Williamson, Meltzoff, & Markman,
2008). Sometimes, though, they simply reproduce exactly the
sequence of actions they see the experimenter perform—they
overimitate (Horner & Whiten, 2005; Lyons, Santos, & Keil, 2006;
Tomasello, 1993). These conflicting results may seem puzzling.
From a Bayesian perspective, though, this variability could easily
reflect an attempt to balance two sources of information about the
causal structure of the event. The statistics themselves are one
source. The other is the assumption that the adult is trying to be
informative.

To illustrate, earlier we described the Buchsbaum et al. (2011)
study in which children rationally picked out and imitated only the
causally relevant actions from a longer string. Buchsbaum et al.
also did exactly the same experiment but now included pedagog-
ical information: The experimenter said, “Here’s my toy; I’m
going to show you how it works.” In this case, children were much
more likely to overimitate, that is, they assumed that everything
the adult did was causally effective and imitated all her actions.
Moreover, a Bayesian model predicted exactly how much children
would overimitate. Again, probabilistic models can illuminate a
classical developmental problem—how, when, and why children
imitate.

The interventionist causal Bayes net framework suggests that
children might learn causal structure especially effectively from
their own interventions and from the interventions of others, par-
ticularly when those others are trying to teach them. Experiment-

ing yourself can provide especially rich information about causal
structure. Attending to the interventions of others can point chil-
dren even more narrowly to just the statistical relationships that are
most likely to support causal inferences. Understanding that those
interventions are pedagogical adds still more information. Empir-
ical work shows that preschoolers do indeed learn particularly
effectively in these ways. Probabilistic models can predict these
learning patterns quite precisely.

Sampling and variability. Earlier we described the search
problems, both the problem of choosing which hypotheses to test
and the problem of finding evidence to test them. Since an ex-
tremely large number of alternative hypotheses might be compat-
ible with the evidence, we cannot learn by simply enumerating all
the alternatives and testing each one. Performing interventions and
observing the interventions of others can help to solve this prob-
lem. These interventions give the child additional evidence that is
particularly well designed to eliminate some relevant alternatives
and discriminate among others. This kind of “active learning” has
been explored in machine learning in reinforcement learning par-
adigms, as well as in the causal Bayes net literature, but has only
just begun to be applied to Bayesian learning more generally.

Instead, the most common solution to the search problem in
Bayesian machine learning is based on hypothesis sampling (see,
e.g., Robert & Casella, 1999). (This is different from the evidence
sampling we talked about earlier in the ping-pong ball study.) This
solution focuses on searching among hypotheses given the evi-
dence, rather than searching for evidence given a hypothesis.

The probabilistic Bayesian view suggests that, at least ab-
stractly, the learner has a distribution of many possible hypotheses,
some more and some less probable, rather than having just a single
hypothesis. Since it is impossible to test all the hypotheses at once,
the system randomly but systematically selects some hypotheses
from this distribution and tests just those hypotheses. In some
versions of sampling, hypotheses that are more probable to begin
with are more likely to be sampled than less probable ones, but in
all versions the system will try even low-probability hypotheses
some of the time. Then the system can test the sampled hypotheses
against the evidence. As a result of this test, the system will, in a
Bayesian way, change the probability of these hypotheses, and it
will adjust the distribution of all possible hypotheses accordingly.
Then it samples again from this new distribution of hypotheses and
so on.

Theoretically, we can think of these algorithms as procedures
that search through an extremely wide space of hypotheses and
take samples from that space in order to find the correct one. In
fact, however, these procedures work in a way that will be more
plausible and familiar to developmental psychologists. They may,
for example, take a likely hypothesis and then “mutate’ that
hypothesis to generate a number of new, slightly different hypoth-
eses with different probabilities. Or they may take a likely hypoth-
esis and then consider that hypothesis along with a few other
similar hypotheses. Then this set of hypotheses can be tested
against the data, the probability of the hypotheses can be updated,
and the process can be repeated. In many cases, statisticians can
prove that, perhaps rather surprisingly, in the long run, this kind of
step-by-step constructivist process will give the same answer you
would get by searching through all the hypotheses one by one.

There are many varieties of sampling, but all of them have an
interesting feature: Variability among hypotheses becomes a cru-
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cial hallmark of the learning process. The probabilistic Bayesian
learner entertains a variety of hypotheses, and learning proceeds by
updating the probabilities of these varied hypotheses.

Developmental researchers have increasingly recognized that
children also entertain multiple hypotheses and strategies at the
same time. Children are typically variable. Individual children
often perform correctly and incorrectly on the same task in the
same session, or employ two or three different strategies on the
same task on adjacent trials. As Robert Siegler (1995, 2007) has
cogently emphasized this variability may actually help to explain
development rather than being just noise to be ignored. We do not
just want to know that children behave differently at age 4 than at
age 3, but why they behave differently. Variability can help.

Siegler’s examples typically come from number development.
In his studies, children use variable strategies for exactly the same
addition problems. But the same pattern applies to intuitive theo-
ries like theory of mind or naı̈ve biology. Consider standard
change-of-location false-belief tasks. A child sees Judy put her toy
in the closet and go away. Judy does not see that her Mom then
shifts the toy to the dresser drawer. Judy returns, and the child is
asked, “Where will Judy look for her toy? In the closet or in the
drawer?” In one intensive study (Liu, Sabbagh, Gehring, & Well-
man, 2009), almost 50 preschoolers were given between 20 and 30
false-belief tasks. At one level of analysis, children were quite
consistent: 65% of them passed more than 75% of these tasks; they
were consistently correct. An additional 30% passed fewer than
25% of these tasks; they were consistently incorrect—they said
that Judy would look first in the drawer, the “realist” answer. Only
three children were in the middle, showing a fully mixed pattern.
But when you examine the data in more detail, it becomes clear
that there is enormous variability: All the children produced a mix
of incorrect realist answers and correct false-belief answers.

Related data come from false-belief explanation tasks. In these
tasks, rather than asking for a prediction—”Where will Judy search
for her toy?”—the experimenter shows the child that Judy actually
goes to the wrong place and asks for an explanation, “Why is Judy
looking in the closet?” Young children offer cogent explanations;
in fact, their explanations are often better than their parallel pre-
dictions (Wellman, 2011). But they produce a mix of very different
explanations. On successive tasks, a typical child might answer,
“She doesn’t want her toy anymore” (desire explanation), “It’s
empty” (realist explanation), “She doesn’t know where it is”
(knowledge–ignorance explanation), and “she thinks her toy’s
there” (false-belief explanation). Amsterlaw and Wellman (2006)
tested 3- and 4-year-old children on 24 such false-belief explana-
tion tasks over 6 weeks. Realist explanations were more prevalent
early on, and knowledge–ignorance plus belief explanations were
more prevalent later. But all the children were variable, often
producing two or three different explanations on the same day.

This kind of variability sometimes has led developmentalists to
claim that there are no general shifts in children’s understanding.
Instead, children’s performance is always intrinsically variable and
context dependent (see, e.g., Greeno, 1998; Lave & Wenger, 1991;
Thelen & Smith, 1994). However, such claims stand in tension
with what appear to be genuine broad, general changes in chil-
dren’s knowledge. On the other hand, researchers who are inter-
ested in charting these broader changes often treat this variability
as if it is simply noise to be ignored. But this in turn does not jibe
with evidence that this variability actually helps children learn

(Amsterlaw & Wellman 2006; Goldin-Meadow, 1997; Siegler,
1995).

The probabilistic approach helps reconcile variability with
broad conceptual change. In fact, variability may actually tell
researchers something important about how broader changes take
place. If children are sampling from a range of hypotheses, then
variability makes sense. The gradually increasing prevalence of
belief explanations, for example, might reflect the fact that those
hypotheses become more likely as the evidence accumulates. As a
result, they are more likely to be sampled and confirmed.

But does the variability in children’ answers, both within and
across children, actually reflect the probability of different hypoth-
eses, as the Bayesian view would suggest? For example, will
children produce many examples of high-probability hypotheses
and just a few examples of low-probability hypotheses? In a first
attempt to answer that question, Denison, Bonawitz, Gopnik, and
Griffiths (2010) designed a simple experiment where the proba-
bility of different hypotheses could be precisely defined. They told
4-year-old children that either red or blue chips placed into a
machine could make it go, showed them a bag of mixed red and
blue chips, shook the bag, and invisibly tipped out one of the chips
into the machine, which activated. Then they asked the children
several times whether they thought that the chip in the machine
was red or blue.

In this case, the probability of different hypotheses directly
reflected the distribution of chips in the bag. If there were 80 red
chips and 20 blue ones, then there would be an 80% chance that the
“red chip” hypothesis is right. If children were simply randomly
responding, they should guess red and blue equally often. If they
were simply trying to maximize their successful answers, they
should always say red. But if their responses were the result of a
sampling process, they should choose red 80% of the time and blue
20% of the time, that is, they should “probability match.” If the
distribution was 60/40 instead of 80/20, they should adjust their
responses so that they guess red chip less often and blue chip more
often. In fact, this is just what the children did.

Moreover, children did this in a way that went beyond the
simple probability matching that we see in reinforcement learning
(Estes, 1950). In an additional experiment, children saw two bags,
one with two blue chips and one with a mix of 14 red and six blue
chips. The experimenter picked one of the closed bags at random
and tipped it so a chip went into the machine. The probability that
a blue chip was in the machine equaled the probability that it
would fall out of the bag times the 50% chance that that bag was
chosen. So blue chips were actually more likely to end up in the
machine than red ones, even though there were more red than blue
chips overall. In this condition, children’s responses did not simply
match the frequency of the chips overall, greater for red than blue,
but rather matched the probability that chips of each color would
end up in the machine, greater for blue than red. So children were
not simply updating their behavior based on reinforcement or
matching their responses to the perceptual distribution of the chips.
Instead they seemed to be genuinely generating hypotheses based
on their probability.

More Theoretical Advances: Hierarchical Bayes Nets

Bayes nets are good representations of particular causal struc-
tures, even complex causal structures. However, according to the
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theory theory, often children are not just learning particular causal
structures but are also learning abstract generalizations about
causal structure. For example, in addition to learning that the
experimenter’s desire for frogs causes her to take them out of the
box, children may develop a broader generalization that she always
prefer frogs to other toys. Or more generally still, they may
conclude that desires are likely to differ in different people.

In fact, classic theory research showed that children develop
more abstract, framework knowledge over and above their specific
causal knowledge. For example, when they make judgments about
objects, children often seem to understand broad causal principles
before they understand specific details. Like adults, 3- and 4-year-
olds know that biological objects, like an egg or a pig, have
different insides than artifacts, like a watch or a piggy bank. They
also know that those insides are important to identity and function.
At the same time, however, they are notably inaccurate and vague
about just what those insides actually are (Gelman & Wellman
1991). They say that biological objects have blood and guts (even
an egg), and artifacts have gears and stuffing inside (even a piggy
bank). Similarly, in causal tasks, children assume that objects with
similar causal powers will have similar insides, even before they
know exactly what those insides are actually like (Sobel, Yoachim,
Gopnik, Meltzoff, & Blumenthal, 2007).

These broader generalizations are important in both scientific
and intuitive theories. Philosophers of science refer to overhypoth-
eses (Goodman, 1955), or research programs (Laudan, 1977), or
paradigms (Kuhn, 1962) to capture these higher order generaliza-
tions. Cognitive developmentalists have used the term framework
theories (Carey, 2009; Wellman, 1990; Wellman & Gelman,
1992). In their framework theories, children assume there are
different kinds of variables and causal structure in psychology
versus biology versus physics. In fact, they often understand these
abstract regularities before they understand specific causal rela-
tionships (see, e.g., Simons & Keil, 1995).

Some nativists have argued that this must mean that the more
abstract causal knowledge is innate. In contrast, constructivists,
including Piaget and theory theorists, have insisted that this more
abstract causal knowledge could be learned. But how could this
be? Bayes nets tell us how it is possible to learn specific causal
structure. How is it possible, computationally, to learn these more
abstract overarching causal principals?

Inspired by both the philosophy of science and cognitive devel-
opment, Griffiths and Tenenbaum (2007, 2009; Tenenbaum,
Kemp, Griffiths, & Goodman, 2011) have formulated computa-
tional ways of representing and learning higher-order generaliza-
tions about causal structure. Following Gelman, Carlin, Stern, and
Rubin (2003), they have called their approach hierarchical Bayes-
ian modeling (HBM) or, sometimes, theory-based Bayesian mod-
eling. The idea is to have meta-representations, that is, represen-
tations of the structure of particular Bayes nets and of the nature of
the variables and relationships involved in those causal networks.
These higher level beliefs can constrain the more particular hy-
potheses represented by particular Bayes nets. Moreover, these
higher level generalizations can themselves be learned by Bayes-
ian methods.

In standard Bayesian modeling, a particular Bayes net represents
a specific hypothesis about the causal relations among particular
variables. Hierarchical Bayesian models stack up hypotheses at

different levels. The higher levels contain general principles that
specify which hypotheses to entertain at the lower level.

Here is an example from biology. Consider a family of causal
graphs representing causal relations between sleeping, drinking,
being exposed to cold, and so forth on the one hand and metabo-
lizing energy, being active, becoming strong, growing, having a
fever, healing, and so forth on the other, as in Figure 5. Perhaps the
relations might be captured by the graph of nodes and arrows on
the left hand side of Figure 5, Graph A. Perhaps instead, the correct
causal structure is Graph B or Graph C. In fact, something very
like Graph B is what Inagaki and Hatano (2002, 2004) have
described as the naı̈ve vitalistic biology apparent in the cognition
of 4- and 5-year-olds (see Inagaki & Hatano, 2004, p. 42, Fig-
ure 2.3), while something like Graph C would be more like the
theory of scientific medicine.

Although Graphs B and C themselves differ, they are actually
both versions of the same more abstract graph schema. In this
schema, all the nodes fall into three general categories: (a) input
situations, that is, external forces that affect an organism (sleep,
exposure, eating), (b) outcome occurrences, that is, characteristics
of the organism itself (getting sick, healing, growing), and (c)
internal biological processes (metabolizing energy). Both Graphs
B and C (in contrast to Graph A) have this general form, but differ
in specifics. Both could be generated from a simple higher order
framework theory that goes something like this:

1. There are three types of nodes: Input, Process, and Outcome.
2. Possible causal relationships only take the form of

Input3 Process and Process3Outcome, or, in total,
Input3Process3Outcome.

Note that Input3Process3Outcome is more general and ab-
stract than any of the more specific graphs in Figure 5.
Input3Process3Outcome is at a higher level in several ways.
Input, Process, and Outcome are not themselves any of the nodes
in any of the graphs (which are instead “eat food,” “heal,” and the
like). Further, Input3Process3Outcome does not itself directly
“contact” the evidence, which would include dependencies be-
tween “eats food” and “gets sick,” or “eats food” and “metabolizes
energy.”

Recall that Bayesian reasoning means that we can solve the
inverse problem and determine the posterior, the probability of
the hypothesis given the evidence, by using what we know about
the likelihood and the prior. P(H/E) is a function of P(H) and
P(E/H).

The idea behind hierarchical Bayesian learning is to use the
same reasoning but now relate a particular hypothesis to a higher
level framework theory instead of relating the hypothesis to evi-
dence. We can think of the specific hypothesis H, as evidence for
a higher level theory, T. Then we can consider the probability of T
given H, P(H/T). That is, we can specify the likelihood of lower
level hypotheses given higher level theories—P(H/T)—just as we
can specify the likelihood of the evidence given a lower level
hypothesis—P(E/H). High-level theories can act as constraints on
inference at the lower level. Lower level hypotheses provide
evidence for the higher level theories. Moreover, T could also be
related to a yet more general framework theory T1 and so on to
produce a hierarchy of theories at different levels.

Going back to Figure 5, we can think of Graphs A, B, and C as
specific theories of biology. Input3Process3Outcome is a
higher level framework theory, not a specific theory. This frame-
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work theory generates some specific theories (e.g., Graphs B and
C) but not others (not Graph A, for example). The higher level
framework theory Input3Process3Outcome does not directly
contact the data. But because it generates some specific theories
and not others, the higher level framework theory will indirectly
confront the data via the specific theories it generates.

There are a variety of possible framework theories, just as there
are a variety of specific theories and even more specific hypoth-
eses. Bayesian inference lets us specify the probability of different
framework theories, just as it lets us specify the probability of
different specific theories and different hypotheses. We can infer
the probability of a framework theory from the probability of the
specific theories it generates, just as we can infer the probability of
a specific hypothesis from the evidence.

Computational work on HBMs has shown that, at least norma-
tively, hierarchical Bayesian learning can actually work. Higher
level framework theories can indeed be updated in a Bayesian way
via evidence that contacts only lower level hypotheses. Griffiths
and Tenenbaum (2007) provided several simple demonstrations;
Kemp, Perfors, and Tenenbaum (2007) and Goodman, Ullman,
and Tenenbaum (2011) provided more comprehensive and com-
plex ones. These demonstrations show that it is possible, in prin-
ciple, for learning to proceed at several levels at once—not just at
the level of specific hypotheses but also at the level of specific
theories and, even more abstractly, at the framework theory level.

At the least, these demonstrations provide intriguing thought
experiments. They suggest that data-driven learning can not only
change specific hypotheses but can also lead to more profound
conceptual changes, such as the creation of more abstract theories
and framework theories. These computational thought experiments
underwrite the feasibility of constructivist accounts.

HBMs also help address the hypothesis search problem. If a
learner initially assumes a particular framework theory, she might
only test the specific theories that are generated by that framework
theory, rather than other hypotheses. If a 4-year-old believes the
vitalist framework theory of biology she may consider hypotheses
about whether sleeping well or eating well makes one grow, but
she will not initially consider the hypothesis that growing makes
one sleep well or that exposure to cold makes one heal poorly.

Constructivists insist that the dynamic interplay between struc-
ture and data can yield both specific kinds of learning and more
profound development as well. HBMs provide a more detailed
computational account of how this can happen. On the hierarchical
Bayesian picture, local causal learning can, and will, lead to
broader, progressive, theory revision and conceptual change.

Abstract Learning in Childhood

While these HBMs have been inspired by developmental data,
they are new. So only a few very recent experimental develop-
mental studies have specifically tested hierarchical Bayesian ideas.

Learning Abstract Schemas

Dewar and Xu (2010) have shown that even infants can infer
abstract regularities from patterns of data in their category learn-
ing. In the causal case, more focally, Schulz et al. (2008) designed
an experiment in which blocks from different underlying and
nonobvious categories would interact according to different gen-
eral causal principles. When some blocks banged together, they
made a noise, but when others banged together, they did not. In
fact, the pattern of evidence could be explained by assuming that

Figure 5. Three different causal Bayes nets of commonplace biological events.
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the blocks fell into three categories, X, Y and Z. X activates Y, and
Y activates Z, but X does not activate Z. Four-year-old children
used a few samples of evidence to infer the existence of these three
distinct categories and then generalized this high-level rule to new
cases. They assumed that new blocks would fall into one of these
three general categories.

Lucas, Gopnik, and Griffiths (2010) investigated whether chil-
dren could infer generalizations about the logic of a causal system.
First, they showed children a “blicket detector” that followed
either a disjunctive rule (all red blocks made it go) or a conjunctive
one (both a red and a blue block were needed to make it go). Then
they placed a new set of differently colored blocks on the detector.
The children saw an ambiguous pattern of evidence that was
compatible in principle with either the disjunctive or conjunctive
principle. The 4-year-olds generalized the prior higher order rule to
the new blocks—they assumed that the new blocks acted disjunc-
tively or conjunctively on the basis of earlier evidence.

These two recent studies show that given appropriate patterns of
evidence, 4-year-old children can go beyond inferring specific
causal relationships. They can also infer more abstract generaliza-
tions in the way that hierarchical Bayes nets would propose. Even
before the children knew exactly which blocks caused exactly
which effects, they had inferred some general principles—the
blocks would fit into one of three categories, or they would act
conjunctively.

Progressive Learning in Childhood

Hierarchical Bayesian models also rely crucially on variability
among hypotheses. They test multiple specific theories and frame-
work theories, and update the probability of those theories in the
light of new evidence, just as probabilistic Bayesian models do in
general. From this hierarchical perspective, variability can be
thought of not only “synchronically” (children adopt multiple
approaches at one time) but also “diachronically” (different ap-
proaches emerge over time). This means that as hierarchical
Bayesian learning proceeds over multiple iterations, intermediate
transitional hypotheses emerge. In particular, in the learning pro-
cess, some abstract hypotheses progressively come to dominate
others but then themselves become dominated by still others.
HBMs, as they dynamically operate on evidence over time, result
in characteristic progressions of intermediate hypotheses—
progressions of specific hypotheses and more abstract theories and
framework theories (Ullman, Goodman, & Tenenbaum, 2010).

If children are hierarchical probabilistic Bayesian learners, then
they should also produce intermediate hypotheses, and those hy-
potheses should improve progressively. In fact, children’s concep-
tual development does progress in this way. Indirect evidence of
such progressions is available, for example, in studies of children’s
naı̈ve astronomy (Vosniadou & Brewer, 1992) and naı̈ve biology
(Inagaki & Hatano, 2002). But more direct evidence is provided by
“microgenetic” studies that track conceptual change longitudinally
over days or weeks (see, e.g., Siegler, 2007). Recent research on
preschoolers’ theories of mind illustrates this approach.

Some recent research claims that 12- to 15-month-old infants
are already aware that actors act on the basis of their beliefs and
false beliefs (e.g., Onishi & Baillargeon 2005; Surian, Caldi, &
Sperber, 2007). It is not yet clear how to best interpret these infant
false-belief findings or how to integrate them with the preschool

research. Some insights from the probabilistic models framework
may be relevant to this problem, however. First, developmentalists
can ask whether children represent a coherent network of causal
beliefs, like a complex causal Bayes net, or instead simply have
isolated representations of particular causal links. The claim that 3-
and 4-year-olds have different theories of mind is not, and never
was, based on their performance on false-belief tasks alone. In-
stead, theory theorists argued for a theoretical change based on the
simultaneous and highly correlated emergence of many conceptu-
ally related behaviors. These behaviors involve explanation as well
as prediction, and involve the understanding of sources of infor-
mation, appearance and reality, and representational change as
well as predictions about actions (Gopnik & Wellman, 1992;
Wellman, 2002). For example, passing false-belief tasks is highly
and specifically correlated with children’s ability to understand
that their own beliefs have changed and that appearances differ
from reality (Gopnik & Astington, 1988). Similarly, 3-year-old
children who are trained on understanding belief show an im-
proved understanding of the sources of their knowledge but do not
show a similarly improved understanding of number conservation
(Slaughter & Gopnik, 1997). Infants may have early pieces of this
network but only integrate them into a coherent whole between the
ages of 3 and 5.

A second related issue concerns the distinction between predic-
tion and causal representation that we outlined earlier. The infant
findings largely come from “looking-time methods,” which reflect
whether or not infants predict specific outcomes. It may be that
these results reflect the fact that infants have collected correla-
tional evidence that will later be used to construct causal repre-
sentations. According to this view, infants might be like Tycho
Brahe (1598)—the astronomer who collected the predictive data
that Copernicus and Galileo used to construct the heliocentric
causal theory. Brahe could predict with some accuracy what the
stars would do, but he could not explain why they acted this way.
Later causal representations would then allow children to use this
information in more sophisticated ways, for example, to design
novel interventions on the world, to make counterfactual infer-
ences, or to provide explanations. An infant might notice that
people’s actions are consistently related to their perceptions, with-
out treating those patterns as evidence for a causal model of the
mind.

Regardless of whether these distinctions explain the changes
from infancy to early childhood, there are definitely changes in
how children think about the mind during the preschool years.
Preschoolers do not just go from failing to passing false-belief
tasks between the ages of 2 and 5. Instead, they develop a series of
insights about the mind. Individual differences in how rapidly or in
what sequence children achieve these insights predict other key
childhood competences. These include how children talk about
people in everyday conversation, their engagement in pretense,
their social interactional skills, and their interactions with peers
(Astington & Jenkins, 1999; Lalonde & Chandler, 1995; Watson,
Nixon, Wilson, & Capage, 1999). These individual differences are
related to IQ and executive function, but also have a distinct
developmental profile (e.g., Carlson & Moses, 2001; Wellman,
Lopez-Duran, LaBounty, & Hamilton, 2008). None of this is
consistent with the idea that all the concepts of intuitive psychol-
ogy are in place innately, and they are only masked by perfor-
mance problems.
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Let us look at the progressive changes in preschoolers’ theory of
mind more closely. It has been clear for a long time that children
can understand peoples’ desires and intentions before they under-
stand their false beliefs (see Wellman & Liu, 2004, for a meta-
analytic review). But this transition actually involves a more
revealing, extended set of conceptual progressions. This becomes
apparent when children are assessed using a recently established
Theory of Mind Scale (Wellman & Liu, 2004). The scale includes
carefully constructed tasks that assess children’s understanding of
(a) Diverse Desires (people can have different desires directed at
the same thing), (b) Diverse Beliefs (people can have different
beliefs about the same situation), (c) Knowledge–Ignorance
(something can be true, but someone may not know it), (d) False
Belief (something can be true, but someone might believe some-
thing different), and (e) Hidden Emotion (someone can feel one
way but display a different emotion). Preschoolers solve these
tasks in this order, and the same five-step progression characterizes
American (Wellman & Liu, 2004; Wellman, Fang, & Peterson,
2011), Australian (Peterson, Wellman, & Liu, 2005), and German
(Kristen, Thoermer, Hofer, Aschersleben, & Sodian, 2006) pre-
schoolers.

If these progressions reflect hierarchical Bayesian learning, then
they should vary depending on the learners’ experiences. Recent
studies demonstrate two kinds of variation. One is variation in
timetables. Deaf children of hearing parents go through the same
five-step sequence as their hearing peers, but they are very de-
layed. They take 12 to 15 years to proceed through the same steps
that take hearing children 5 or 6 years (Peterson et al., 2005;
Wellman et al., 2011). In contrast, deaf children of deaf parents,
who learn sign as a native language, do not show these delays. The
deaf children of hearing parents have much less conversational
experience than hearing children or deaf children of deaf parents,
and this reduced experience probably leads to the very delayed
appearance of each step, even though the sequence of those steps
is the same.

The other variation involves differences in sequencing that
reflect different childhood experiences. For example, American
and Chinese children are immersed in different languages and
cultures, which emphasize quite different aspects of intuitive psy-
chology. These differences lead to related differences in their early
theory-of-mind progression—the sequence of insights is different
rather than delayed (Wellman, Fang, Liu, Zhu, & Liu, 2006).

To elaborate, a theory of mind is the product of social and
conversational experiences that may vary from one community to
another. Western and Chinese childhood experiences could be
crucially different. Cultural psychologists have suggested that
Asian cultures emphasize the fact that people are interdependent
and function in groups, while Western cultures emphasize inde-
pendence and individuality (Nisbet, 2003). These differences lead
to different emphases. Asian cultures may focus on common
perspectives, while American cultures focus on the diversity of
beliefs. Moreover, Western and Chinese adults seem to have very
different everyday epistemologies. Everyday Western epistemol-
ogy is focused on truth, subjectivity, and belief; Confucian–
Chinese epistemology focuses more on pragmatic knowledge ac-
quisition and the consensual knowledge that all right-minded
persons should learn (Li, 2001;Nisbet, 2003). Indeed, in conver-
sation with young children, Chinese parents comment predomi-

nantly on “knowing,” whereas U.S. parents comment more on
“thinking” (Tardif & Wellman, 2000).

In accord with these different cultural emphases, Chinese pre-
schoolers develop theory-of-mind insights in a different sequence
than Western children. Both groups of children understand the
diversity of desires first. But Chinese children, unlike Western
children, consistently understand knowledge acquisition before
they understand the diversity of beliefs. (Wellman et al., 2006,
2011).

This extended series of developmental achievements fits the
hierarchical Bayesian learning, theory-construction perspective.
According to the Bayesian view, children should develop a char-
acteristic sequence of theories as their initial hypotheses become
progressively revised in the face of new evidence. In fact, Good-
man et al. (2006) proposed a Bayesian model of theory-of-mind
learning that captures the characteristic changes in children’s un-
derstanding. Moreover, the probabilistic Bayesian perspective
would predict that the sequence of theories can differ depending on
the learner’s exact “diet” of evidence. The comparison of deaf and
hearing children and American and Chinese children supports this
prediction.

The Blessings of Abstraction

So far we have shown that hierarchical Bayesian models can
provide computational accounts that explain how children might
learn abstract framework theories from specific theories, which are
learned from evidence. But the developmental findings also sug-
gest that children sometimes develop abstract framework theories
before they develop detailed specific theories.

The conventional wisdom in psychology has been that learning
at a lower level of generalization and abstraction —more concrete
learning—must precede higher order, more abstract, and more
general learning. This idea has been presupposed both by empir-
icists and by nativists. So when infants or very young children
understand abstract structure, this is often taken to mean that this
structure is innate (see, e.g., Spelke et al., 1992). Although some
developmentalists have stressed instead that young children often
seem to learn abstract regularities before specific ones (Simons &
Keil, 1995; Wellman & Gelman, 1998), this is a distinctively
unconventional proposal—it might appear that this kind of learn-
ing just could not work.

In fact, recent work on HBM has shown that sometimes abstract
generalizations can actually precede specific ones (e.g., Goodman
et al., 2011). In principle, then, children may be learning both
specific facts about the desires of others, and generalizations about
all desires, from the same evidence and at the same time.

A simple example can illustrate this. Suppose an experimenter
shows you a pile of many bags of colored marbles, and your job is
to learn the color of the marbles in each bag. Now the experimenter
draws some marbles out of the bags, beginning with Bag 1. She
takes out one, then two, then three, and then four red marbles in a
row. Each time she asks you what you think will happen next.
After a while you will predict that yet another red marble will
appear from Bag 1. Then the experimenter repeats this procedure
with Bag 2. This time, she takes out a succession of blue marbles.
By Bag 3, you might well conclude, “I don’t know the color, but
whatever the first one is I bet all the rest in that bag will be the
same color.” You have learned an abstract regularity, and your
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knowledge of that regularity precedes your learning of the specific
color in Bag 3 or, for that matter, any other remaining bag. Note
that this abstract structure was certainly not innate; it was learned.
Under the right circumstances, abstract regularities (e.g., Theory �
all marbles in Bag 3 will be the same color) can be learned in
advance of the specifics (Hypothesis � all marbles in Bag 3 are
purple). The philosopher Nelson Goodman (1955) called these
more abstract principles overhypotheses—hypotheses about which
hypotheses are likely.

Kemp et al. (2007) demonstrated how overhypotheses can be
learned in hierarchical Bayesian models, and building on these
ideas, Goodman et al. (2011) have used hierarchical Bayesian
modeling to provide a striking set of computational results they
call “the blessing of abstraction” (p. 5). They have shown that in
hierarchical Bayesian models, it is often as easy to learn causal
structure at several levels at once as it is to simply infer particular
causal structure. Moreover, learning both higher level and specific
structures from the data can be no slower (that is, requires no more
data samples) than learning only the specific structures and having
the abstract ones “innately” specified at the start.

Probabilistic hierarchical Bayesian learners thus learn abstract
structures alongside and even before the specifics that those reg-
ularities subsume. Arguably, children do the same thing.

Conclusions

The interchange between cognitive developmental scientists and
probabilistic Bayesian modelers has already informed us about
theories, learning, and development, and it promises further in-
sights. The empirical results we have described are not easily
compatible with either traditional empiricism or nativism. The
children in these studies are clearly not simply associating partic-
ular inputs. Instead, they infer more abstract causal structures,
including the very abstract structures involved in overhypotheses
or framework theories. At the same time, it is plain that these
structures are not simply present innately and then triggered or
masked by performance constraints. In the learning experiments,
children receive evidence for new causal structures that they do not
already know—even very young children learn these new struc-
tures rapidly and accurately. Similarly, the gradual sequence of
progressively more accurate theories, and the fact that this se-
quence unfolds differently with different evidence patterns, are
both difficult to explain in nativist terms.

Thinking about computation provides new empirical projects for
developmentalists, and thinking about development also provides
new projects for the modelers. We conclude by briefly listing some
of these future projects.

Several advances in the computational world could inspire new
developmental investigations. Developmentalists have only just
begun to explore how the computational work on hierarchical
Bayesian models might be reflected empirically in the develop-
ment of framework theories. There is also computational work that
suggests that what appear to be causal primitives, like the very idea
of intervention or causation itself, could, in principle, be con-
structed from simpler patterns of evidence (Goodman et al., 2011).
There is important empirical work to be done exploring which
representations are in place initially and which are learned. Models
can help direct such empirical endeavors.

Perhaps the most significant area where new computational
work can inform development involves the algorithmic instantia-
tions of computational principles. Most of the formal work so far
has been at what David Marr (1982) called the computational level
of description. That is, the models show how it is possible, nor-
matively and in principle, to learn structure from patterns of
evidence. However, we can also ask how it is possible to actually
do this in real time in a system with limited memory and
information-processing capacity. There are many different specific
algorithms being explored in machine learning, and the algorithms
children might use or approximate are not yet known. Similarly,
formal work specifies how active intervention can inform learning,
and these ideas can also be found in work on “active learning” in
computation. Although researchers know that children actively
explore the world, they do not know in detail how their exploration
shapes and is shaped by learning.

Ultimately, of course, developmentalists would also like to
know how these algorithms are actually instantiated in the brain. A
few recent studies have explored the idea that neural circuits
instantiate Bayesian inferences (Knill & Pouget, 2004), but this
work is only just beginning.

Equally, paying attention to development raises new questions
for computationalists. The conceptual changes that children go
through are still more profound than any the computational models
can currently explain. Even hierarchical Bayes nets are still pri-
marily concerned with testing hypotheses against evidence and
searching through a space of hypotheses. It is still not clear exactly
how children generate what appear to be radically new hypotheses
from the data.

Some learning mechanisms have been proposed in cognitive
development to tackle this issue, including the use of language and
analogy. In particular, Carey (2009) has compellingly argued that
specific linguistic structures and analogies play an important role
in conceptual changes in number understanding, through a process
she calls Quinean bootstrapping. There is empirical evidence that
the acquisition of particular linguistic structures can indeed re-
shape conceptual understanding in several other domains, closer to
intuitive theories (see, e.g., Casasola, 2005; Gopnik, Choi, &
Baumberger, 1996; Gopnik & Meltzoff, 1997; Pyers & Senghas,
2009; Shusterman & Spelke, 2005).

But it is difficult to see how language or analogy alone could
lead to these transformations. In order to recognize that a linguistic
structure encodes some new, relevant conceptual insight, it seems
that you must already have the conceptual resources that the
structure is supposed to induce. Similarly, philosophers have long
pointed out that the problem with analogical reasoning is the
proliferation of possible analogies. Because an essentially infinite
number of analogies are possible in any one case, how do you pick
analogies that reshape your conceptual understanding in relevant
ways and not get lost among those that will simply be dead ends
or worse? In the case of mathematical knowledge, these problems
may be more tractable because such knowledge is intrinsically
deductive. But in the case of inductively inferring theories, there is
a wide range of possible answers. When many linguistic structures
could encode the right hypothesis, or many analogies could be
relevant, the problem becomes exponentially difficult. These pro-
posals thus suffer from the same constructivist problem we have
been addressing all along. And so, again, characterizing the influ-
ence of language and analogy in more precise computational terms
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might be very helpful. If probabilistic and hierarchical Bayesian
models can help solve the riddle of induction, then perhaps they
can shed light on these other learning processes as well.

Moreover, empirically, developmentalists have discovered sev-
eral other phenomena that seem to be involved in theory change
but that have yet to be characterized in computational terms. Much
recent work in developmental psychology has explored how chil-
dren can learn from the testimony of others (Koenig, Clément, &
Harris, 2004). As we noted earlier, computationalists are just
starting to provide accounts of the sort of social learning that is
involved in intuitive pedagogy: there is still much to be done in
understanding how children learn from other people.

Similarly, there is a great deal of work suggesting that expla-
nations play an important role in children’s learning (Wellman,
2011). Even very young children ask for and provide explanations
themselves and respond to requests for explanations from others
(e.g., Callanan & Oakes, 1992), and these explanations actually
seem to help children learn (Amsterlaw & Wellman, 2006; Legare,
2012; Siegler, 1995). But there is no account of explanation in
computational terms.

Schulz and colleagues have shown that exploratory play has an
important role in causal learning. But other kinds of play, partic-
ularly pretend and imaginary play, are equally ubiquitous in early
childhood and seems to have an important role in early learning.
However, that role is still mysterious computationally, though we
are starting to have some empirical and theoretical clues (Buchs-
baum et al., in press).

The relation between learning in infancy and in the preschool
period is also unresolved. There is extensive evidence that very
young infants detect statistical patterns. There is also evidence that
16- to 20-month-olds can infer causal structure from those patterns
(Gweon & Schulz, 2011; Kushnir et al. 2010; Ma & Xu, 2011;
Sobel & Kirkham, 2007). Researchers still don’t know what hap-
pens in between.

More generally, there are questions about the relationship be-
tween learning and broader development. For the hierarchical
probabilistic models framework, and for that matter, for the theory
theory itself, there is no principled difference among inference,
learning, and development. Accumulated experience can lead to
profound and far-reaching developmental change—the equivalent
of “paradigm shifts” in science. Nevertheless, researchers can still
ask whether there is something about children, in particular, that
makes them different kinds of learners than adults.

Both evolutionary and neurological considerations suggest that
this might be true. Childhood is a period of protected immaturity
in which children are free to learn and explore without the practical
constraints of adult life. Children’s brains appear to be more
generally flexible and plastic than adult brains, and children seem
to be particularly flexible learners. From a computational perspec-
tive, some of this flexibility may reflect the fact that children
simply have less experience and so have lower “priors” than adults
do. But there may also be more qualitative differences between
adult and child learners. In the reinforcement learning literature,
for example, there is a distinction between “exploring” and “ex-
ploiting.” Different computational mechanisms may be most ef-
fective when an organism is trying to learn novel information and
when it is trying to make the best use of the information it already
has. Children may be designed to start out exploring and only
gradually come to exploit. Computational models that reflect and

explain these broad developmental changes would be particularly
interesting.

We have shown that new computational ideas coupled with new
cognitive development research promise to reconstruct construc-
tivism. The new computational research relies on probabilistic
Bayesian learning and hierarchical Bayesian modeling. The new
cognitive development research examines the mechanisms of
childhood causal learning. The new studies show how exploration
and experimentation, observation and pedagogy, and sampling and
variability lead to progressively more accurate intuitive theories.
These advances provide a more empirically and theoretically rich
version of the theory theory. Collaboration between cognitive
development and probabilistic modeling holds great promise. It
can help produce more precise developmental theories and more
realistic computational ones. It may even explain, at last, how
children learn so much about the world around them.
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