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For years now, the work of Andy Clark has set the agenda for the philosophy of cognitive 
science. From his early work on connectionism, to his groundbreaking Being There 
(1998), to the most recent Surfing Uncertainty (2015), Clark’s contributions consistently 
invite us to reconsider fundamental assumptions about the mind. Clark’s work often 
balances commitment to representation with embodied and embedded approaches to 
cognition. This tendency is present in Clark’s latest project where a Bayesian approach to 
perception is integrated in an action-oriented framework. This will be our focus here.  
 In the first part of this chapter, we will discuss the predictive processing 
framework (PP), explicating its relationship with hierarchical Bayesian models in 
theories of perception. In the second part, we examine the relationship between 
perception and action in the PP model. Our overarching goal is twofold. We would like, 
first, to get clearer on the picture of mental activity that Clark is presenting. Second, we 
will point out that, although the framework presented by Clark certainly has interesting 
novel features, some of Clark’s glosses on it are misleading. In particular, we think that 
Clark’s interpretation of predictive processing as essentially a top-down, expectation-
driven process, on which perception is aptly thought of as “controlled hallucination”, 
exaggerates the contrast with the traditional picture of perception as bottom-up and 
stimulus driven. Additionally, we think that, despite the rhetoric, Clark’s PP model 
substantially preserves the traditional distinction between perception and action.   
 
1. Hierarchical Bayes in Perception 
 
The predictive processing framework (Clark 2013, 2015, Hohwy 2013) combines two 
components: (1) A hierarchical Bayesian model, and (2) a predictive coding algorithm for 
the updating of representations at each stage of the hierarchy. (2) is intended as a 
proposal for how to implement (1) (Clark 2016, pp. 27-28). As we will see in section 2, 
Clark thinks that it is the predictive coding aspect of the package that provides the most 
striking contrast with traditional views. Nonetheless, it is helpful to start by considering 
the Hierarchical Bayesian model in isolation. In this section, we offer clarification of the 
details, and some interpretative points that differ in crucial respects from Clark’s. 

Marr’s (1982) distinction between three different levels of analysis of a perceptual 
information-processing system (task, algorithmic, and physical-implementation levels) is 
a helpful framework for understanding different versions of hierarchical Bayes. On the 
Marrian picture, the goal of perceptual processing is to accurately derive perceptions of 
distal stimulus features (“the feature set”) – such as surface shape, orientation and color – 
given proximal input (e.g. retinal stimulation). The task-level analysis specifies this 
input-output function. A visual perception of surface depth, for example, may result from 
                                                
1 This chapter was a fully collaborative enterprise; the order of the authors' names is arbitrary. We thank 
Matteo Colombo, Liz Irvine and Susanna Siegel for comments on an earlier draft of the chapter.  
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a certain disparity in left and right retinal inputs. The task-level analysis can also involve 
an explanation of why this input-output function is appropriate2. For instance, in a natural 
environmental setting, a certain retinal input may be likely to have been produced by a 
surface at a certain depth, and the visual system may be adapted to reflect this fact.  

The “algorithmic” level, by contrast, specifies how the system performs the task – 
in the perceptual case, how it derives percepts. The algorithmic description identifies the 
intermediate steps between input and output. Marr appealed, at this level, to 
representations of various kinds – for example, 2D representations that are intermediate 
between retinal input and 3D representations – as well as to computational rules 
governing the transitions between representations.  

One of Marr’s crucial insights is that the same process described in task-level 
terms can be implemented, or realized, by a variety of different algorithms. Furthermore, 
an algorithm can be implemented by different neurophysiological or other physical 
processes (Marr’s third level of analysis). However, crucially for our purposes, the 
algorithmic level can itself be gradually unpacked at different levels of specificity, and so 
can be thought of as containing its own nested “levels”. Furthermore, a partial description 
of the algorithm can involve “subtasks” that can themselves be given a Marrian task-level 
analysis. As we will see, we get from the weakest versions of Hierarchical Bayes to 
Predictive Processing by just such an unpacking of algorithmic sub-levels and sub-tasks. 

The “hierarchical” part of Hierarchical Bayesian models is a partial specification 
of how the task of computing the feature set is carried out. The hierarchy is a series of 
quasi-modular processing stages, each devoted to computing a different element of the 
feature set (so the overall percept is distributed across stages). Importantly, each stage is 
only causally affected by (i.e. only receives information input from) the adjacent stages in 
the series (above and below), so its series-position is determined by these input-relations 
(Lee and Mumford (2003)). For example, it might be that in visual processing, 2D 
surface shape is computed from information about edge properties at a lower stage, and 
from higher-stage information about the 3D shape of the object that the surface is part of. 
The lowest stage may be inputted directly from the proximal stimulation, or there may be 
further lower stages that compute features not mentioned in the initial feature set. Also, 
each stage may be further sub-divided into horizontally connected units, e.g. different 
parts of a feature-map, although we ignore this complication here. 

A model is “Bayesian” at the task level, if the appropriateness of the input-output 
function is explained in terms of probability distributions over distal and proximal 
variables. The function (approximately) matches the inference that a rational agent would 
make given knowledge of the probabilities and knowledge of the proximal input. In the 
context of hierarchical models, we can give such an analysis both of the overall 
perceptual task, and the sub-task carried out at each stage of the hierarchy. Either way, it 
comes in the form of conditional probability distributions linking variables at adjacent 
stages (giving us a “Markov random field” structure (see Blake et al. 2011 ch.1)). For 
example, the analysis tell us how well a given shape estimate predicts the edges encoded 
below (the likelihood), and how well confirmed it is by the high-level information from 
above (the prior), jointly entailing, by Bayes theorem, a posterior distribution over 
surface shape percepts. 
                                                
2 “Appropriate” could be construed in different ways, depending on what the goal of the system is 
understood to be (e.g. reliably veridical percepts vs percepts that are conducive to reproductive success). 
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Typically, it is further assumed that the goal of the perceptual system is to select a single 
value from this distribution – usually the feature with maximum posterior probability. On 
some versions, however, each stage encodes the whole posterior distribution (Friston 
2009). Further, the process is iterative. The inputs to each stage will change as the 
informational states change at the adjacent stages, and these changes will mandate a new 
update.3  

Different versions of hierarchical Bayes then differ on whether such a Bayesian 
description is appropriate only at the task level or also at the algorithmic level. As we see 
it, “algorithmic bayesianism” involves three components: (a) the relevant probability 
distributions are represented by the system (b) the input-output function computed by the 
algorithm over these representations approximately conforms to ideal Bayesian inference 
and (c) a uniform computational strategy is used across contexts. Task-level Bayesians 
need not, and often do not, endorse such a further interpretation (Griffiths et al. 2012). 
The feature representations at each stage might encode single values, not probability 
distributions. The conditional distributions linking stages might be seen as constraining 
the system’s proper function without being represented; for example, they might be 
environmental statistics that the system is designed to conform to (Geisler 2008, Orlandi 
2014). Finally, approximately optimal results might be achieved using a context-
dependent “bag of tricks” rather than a uniform algorithm across contexts. 

In contrast with such weaker versions of Bayesianism, the predictive processing 
framework, as interpreted by Clark, is Bayesian in the stronger sense that “neural 
representations (…) encode probability density functions and the flow of inference 
respects Bayesian principles.” (Clark 2015, p. 39) Additionally, Clark thinks that a 
uniform type of algorithm (predictive coding) is used across contexts. In these respects, 
Clark follows Friston (2009). Probabilistic representations in perception do have some 
empirical support (Knill and Pouget 2004, Ma and Jazayeri 2014), as does predictive 
coding (Huang and Rao 2011, Rao and Ballard 1999). Still, it’s important to note that 
neither are an inevitable part of the hierarchical Bayes package.  

An attraction of a Bayesian system is its informational richness. Taking into 
account uncertainty, rather than using crude conditionals linking variables, allows for 
much more accurate feature estimates. However, a common problem for Bayesian 
models is that the probabilistic computations that would give optimal results are often 
intractable. This leads to one motivation for a Hierarchical model. Even with a relatively 
small number of stimulus variables, we have the problem of a combinatorial explosion of 
probabilistic dependencies that might have to be taken into account to compute a 
posterior on a particular feature, because each feature might depend on any combination 
of other features in arbitrary ways. A Hierarchical model makes this more tractable by 
making conditional independence assumptions: conditional on the fixing of variables 
adjacent in the network, the variable of interest is independent of other variables (see 
Domingos 2015, ch. 6 for helpful discussion). This only works if the conditional 
independence assumptions are roughly correct, putting interesting constraints on the sets 
of features that can be successfully computed using a model of this kind: the external 
features must form a dependence hierarchy that mirrors the processing hierarchy. 
                                                
3 Given that we have stable percepts, this iterative process should converge on a solution in normal 
circumstances, although convergence need not be guaranteed in every case (e.g. binoculary rivalry). 
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So, a distinctive feature of this model is the way it restricts the kind of priors 
drawn on, by restricting the domain to feature sets with the right hierarchical 
dependencies. Inferential systems typically rely on background assumptions to infer a 
representation of the environment from sensory stimulation; here, all the work is done by 
conditional probability distributions linking adjacent variables in the hierarchy. In a 
specific sense, then, hierarchical Bayes is actually more similar to a traditional “bottom-
up” approach than a less restricted model that allows direct inferences from the highest-
stages to lowest-stage variables.  

Another key feature of this model is the way that it allows the system to take into 
account past evidence as well as current evidence in assessing the distribution of a certain 
feature. One way you could do this is by simply storing recent sensory information in a 
buffer, and directly taking it into account in perceptual inference. This model instead 
takes into account past evidence by incorporating it, through a step-wise recursive 
process, into its posterior estimates of the features it represents. These posterior estimates 
become the new priors at each step, to be combined in a rationally weighted way with 
new evidence to produce a new posterior.4 We think this shows that a description of the 
visual system as integrating sensory evidence that comes in over a period of time is more 
fundamental than a description of the system as combining top-down prior information 
with sensory evidence (which Clark emphasizes): the latter is a mere means to the 
former. 

Another simple point to stress in this regard is that the current bottom-up signal, 
and the top-down, past-evidence-based priors will be weighted differently depending on 
their relative reliability/informativeness. In particular, in a novel environment, at least 
initially, the visual system’s priors will be neutral between many possibilities, and the 
bottom-up signal will do most of the work. That is, there’s nothing in the model ruling 
out current evidence often being much more informative than past evidence (again, 
contrary to Clark’s emphasis). 

So far, we’ve described what is distinctive about the Hierarchical Bayesian 
picture. We now consider predictive coding.  
 
2. Predictive Coding in Perception 
 
“Predictive coding” refers to “a strategy for the efficient encoding and transmission of 
information” that is used by a family of similar algorithms that can implement (i.e. 
further unpack) Hierarchical Bayes to give us “predictive processing” (ibid, p. 27, see 
also Spratling (2017)). In particular, predictive coding involves the use of error-
correction units in the updating of representations at each stage of the Bayesian hierarchy 
(more detail below).  
  
Predictive coding, according to Clark, provides the most striking contrast with traditional 
models of perception. 
 

                                                
4 In this way, hierarchical Bayes is an example of a broader class of recursive estimators, including the 
well-known Kalman Filters. 
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“What is most distinctive about the predictive processing proposal (and where much of 
the break from tradition really occurs) is that it depicts the forward flow of information as 
solely conveying error, and the backward flow as solely conveying predictions.” (p. 38). 
 
By “tradition” here Clark means models that posit a “feedforward (even if attention-
modulated) cascade of simple-to-complex feature detection” (p. 45). For example, Marr 
envisaged perceptual processing as sequentially constructing first lower-level feature 
representations (e.g. edge maps), then (on this basis) intermediate levels representations 
(e.g. surface representations) then high-level feature representations (e.g. 3D object 
representations). 

Before we describe the predictive coding framework in further detail, we want to 
stress that it is only one possible implementation of hierarchical Bayes, and that it is a 
fairly speculative empirical proposal. Why is so much weight put on this version 
(Rescorla 2017)? One could explore hierarchical Bayesian models of perception in a 
more implementationally neutral way, including taking seriously the possibility of a 
“scruffy” mixture of implementional strategies. This pluralism would seem to be more in 
the spirit of Clark’s remarks in his 2013 (p. 194) that “considerable distance still 
separates such [Bayesian] models from the details of their implementation in humans or 
other animals. It is here that the apparent triumph of the neats over the scruffies may be 
called into question.” 

Further, we need to be clear whether any alleged feature of the model depends on 
this particular implementation. Consider Clark’s gloss of the predictive framework, on 
which “the flow of representational information (the predictions), at least in the purest 
versions, is all downwards (and sideways).” (ibid, p. 46). This is meant to be supported 
by the fact that a predictive coding algorithm uses error-correction units connected to 
higher-stage representation units, and so (allegedly), the forward flow “solely conveys 
error” (ibid, p. 38).  

This gloss introduces a puzzle. Suppose that (contrary to intention) we regard it as 
a gloss about the hierarchical Bayesian model considered independently of its predictive-
coding implementation.  Hierarchical Bayes, intuitively, involves bottom-up flow of 
information, in the sense that it involves evidence about the world coming in from the 
bottom, over a period of time, that results in Bayesian updating of priors through 
conditionalization. It is true that the system can have strongly weighted priors, and in that 
sense it has a “top-down” component. This makes it different from a bottom-up, Marrian, 
picture. Nonetheless, there is no obvious sense in which there is only top-down 
information “flow” on this picture. If that is right though, how could merely specifying 
how the hierarchy is implemented make any difference to our interpretation?  

That it does make such a difference is clearly Clark’s picture; again, the use of 
error correction signals is the critical factor. We’ll now argue that this is the wrong 
interpretation, focusing on the canonical version of predictive coding from Rao and 
Ballard’s (1999) paper. 

Here’s Rao and Ballard’s helpful diagramming of the model ((b) shows the details 
inside the predictive estimator shown in (a)): 
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Figure 1. Hierarchical network for predictive coding, from Rao and Ballard 1999, p. 80.  
 
In diagram (b), r is the state of the representation unit at that stage, representing a 
stimulus feature; rtd is the “prediction” generated by the representation unit one stage up. 
U (modified by f to represent non-linearities in the transformation, and realized by the 
weights of neural connections), is a function converting r into a prediction of the lower 
stage, which is compared with the representation at the lower stage at a subtraction unit 
(the crossed circle in the diagram) producing the “error representation”. This is then 
converted, by the inverse of U, UT, into a signal that is used to update r, along with the 
prior coming from the stage above in the form of an error signal generated by comparing 
r with rtd (so contrary to common glosses, there actually is a “downwards error signal” in 
this model, albeit inside the estimator). The model also includes a learning algorithm, 
which, over larger time scales, updates the generative model (i.e. U and the analogous 
functions at other stages).  

Note that the system involves both representation units and error units – the 
representation units were already postulated as components of the hierarchical Bayesian 
model; we are adding the error units to flesh out the implementation.  

Now let’s compare this with a different diagramming of a Hierarchical Bayesian 
model, from Lee and Mumford’s influential (2003) paper: 
 

 
Figure 2: Schematic of Hierarchical Bayesian Inference from Lee and Mumford 2003, p. 1436.  
 

areas of the image are in shadow. Second, the high-level
knowledge of the identity of an individual suggests that a
face should have certain proportions, as measured from
the low-level data in V1. Both sets of information would
go into the full explanation of the image.

This basic formulation can also capture the interaction
among multiple cortical areas, such as V1, V2, V4, and
the inferotemporal cortex (IT). Note that although feed-
back goes all the way back to the LGN and it is simple to
include the LGN in the scheme, the computational role of
the thalamic nuclei could potentially be quite different.30

Hence we decide not to consider the various thalamic ar-
eas, the LGN, and the nuclei of the pulvinar, in this pic-
ture at present. The formalism that we introduce applies
to any set of cortical areas with arbitrary connections be-
tween them. But for simplicity of exposition, we assume
that our areas are connected like a chain. That is, we as-
sume that each area computes a set of features or beliefs,
which we now call xv1 , xv2 , xv4 , and xIT , and we make
the simplifying assumption that if, in the sequence of
variables (x0 , xv1 , xv2 , xv4 , xIT), any variable is fixed,
then the variables before and after it are conditionally in-
dependent. This means that we can factor the probabil-
ity model for these variables and the evidence x0 as

P!x0 , xv1 , xv2 , xv4 , xIT"

! P!x0!xv1"P!xv1!xv2"P!xv2!xv4"P!xv4!xIT"P!xIT"

and make our model an (undirected) graphical model or
Markov random field based on the chain of variables:

x0 ↔ xv1 ↔ xv2 ↔ xv4 ↔ xIT .

From this it follows that

P!xv1!x0 , xv2 , xv4 , xIT" ! P!x0!xv1"P!xv1!xv2"/Z1 ,

P!xv2!x0 , xv1 , xv4 , xIT" ! P!xv1!xv2"P!xv2!xv4"/Z2 ,

P!xv4!x0 , xv1 , xv2 , xIT" ! P!xv2!xv4"P!xv4!xIT"/Z4 .

More generally, in a graphical model one needs only po-
tentials #(xi , xj) indicating the preferred pairs of values
of directly linked variables xi and xj , and we have

P!xv1!x0 , xv2 , xv4 , xIT"

! #!x0 , xv1"#!xv1 , xv2"/Z!x0 , xv2" ,

P!xv2!x0 , xv1 , xv4 , xIT"

! #!xv1 , xv2"#!xv2 , xv4"/Z!vv1 , xv4",

P!xv4!x0 , xv1 , xv2 , xIT"

! #!xv2 , xv4"#!xv4 , xIT"/Z!xv2 , xIT",

where Z(xi , xj) is a constant needed to normalize the
function to a probability distribution. The potentials
must be learned from experience with the world and con-
stitute the guts of the model. This is a very active area
in machine learning research.4,6,8,19,20

In this framework each cortical area is an expert for in-
ferring certain aspects of the visual scene, but its infer-
ence is constrained by both the bottom-up data coming in
on the feedforward pathway (the first factor in the right-
hand side of each of the above equations) and the top-
down data feeding back (the second factor) [see Fig. 2(a)].

Each cortical area seeks to maximize by competition the
probability of its computed features (or beliefs) xi by com-
bining the top-down and bottom-up data with use of the
above formulas (the Z’s can be ignored). The system as a
whole moves, game theoretically, toward an equilibrium
in which each xi has an optimum value given all the other
x’s. In particular, at each point in time, a distribution of
beliefs exist at each level. Feedback from all higher ar-
eas can ripple back to V1 and cause a shift in the pre-
ferred beliefs computed in V1, which in turn can sharpen
and collapse the belief distribution in the higher areas.
Thus long-latency responses in V1 will tend to reflect in-
creasingly more global feedback from abstract higher-
level features, such as illumination and the segmentation
of the image into major objects. For instance, a faint
edge could turn out to be an important object boundary
after the whole image is interpreted, although the edge
was suppressed as a bit of texture during the first
bottom-up pass. The long-latency responses in IT, on the
other hand, will tend to reflect fine details and more-
precise information about a specific object.

The feedforward input drives the generation of the hy-
potheses, and the feedback from higher inference areas

Fig. 2. (a) Schematic of the proposed hierarchical Bayesian in-
ference framework in the cortex: The different visual areas
(boxes) are linked together as a Markov chain. The activity in
V1, x1 , is influenced by the bottom-up feedforward data x0 and
the probabilistic priors P(x1!x2) fed back from V2. The concept
of a Markov chain is important computationally because each
area is influenced mainly by its direct neighbors. (b) An alter-
native way of implementing hierarchical Bayesian inference by
using particle filtering and belief propagation: B1 and B2 are
bottom-up and top-down beliefs, respectively. They are sets of
numbers that reflect the conditional probabilities of the particles
conditioned on the context that has been incorporated by the be-
lief propagation so far. The top-down beliefs are the responses
of the deep layer pyramidal cells that project backward, and the
bottom-up beliefs are the activities of the responses of the super-
ficial layer pyramidal cells that project to the higher areas. The
potentials # are the synaptic weights at the terminals of the pro-
jecting axons. A hypothesis particle may link a set of particles
spanning several cortical areas, and the probability of this hy-
pothesis particle could be signified by its binding strength via ei-
ther synchrony or rapid synaptic weight changes.

1436 J. Opt. Soc. Am. A/Vol. 20, No. 7 /July 2003 T. S. Lee and D. Mumford
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x1…xn are variables ranging over values of the stimulus features (e.g. edges), and x0 
ranges over values for sensory evidence (e.g. retinal stimulation). Inside each box, the 
priors and likelihoods for the relevant variable are combined to calculate the maximum 
posterior value of the feature variable, which is fed to the next step. Superficially, then, 
this looks quite different from the “error correction” model, because a representation of a 
stimulus feature is being fed forward from one step to the next, not an error signal, as on 
the Rao and Ballard model.  

Despite this appearance though, we think that the right interpretation of the 
predictive coding model is that it does involve information about stimulus features being 
fed forward. Indeed Lee and Mumford themselves explicitly say that their model is 
compatible with predictive coding. Moreover, what fig 2 really illustrates is just a version 
of Hierarchical Bayes, which, as we have said, can be implemented by predictive coding.  

Clark might respond by insisting that “information flow” really is very different 
on the error correction model. He might dramatize this by considering the case where 
predictions from above match the lower stage representations, so there is no error signal. 
The absence of error signal means that the lower stage is prevented from causally 
influencing the higher stage. If you’re thinking of “information flow” as a partly causal 
notion, it’s natural to read this as meaning that there is no information flow from the 
lower stage to the higher stage. 

We think there are two problems with this reading, however. First, the absence of 
a physical signal clearly can carry information. For example, I might tell you that if you 
don’t receive a telephone call from me at 6pm, this signals that the coast is clear, and the 
heist can begin! We can read the absence of an error signal as passing forward the 
information that a certain stimulus feature is present. So, forward information flow 
doesn’t require a forward signal.  

Second, it’s not even true in cases like this that there is no “feed forward” 
physical signal, representing information about the stimulus. To see what we have in 
mind, compare again the model diagrams in figs 1 and 2.  Following Spratling (2008), we 
think that the apparent difference here is superficial, depending on an arbitrary (at least 
from an information processing perspective) choice of stage-individuation, that is, of 
which components to parse together as a “stage”. As is illustrated in figure 3 below, one 
can equally well parse the stages in Rao and Ballard’s model in such a way that it is a 
representation of stimulus features that is fed forward, and it is an error signal that is 
passed down. It’s (roughly) in this way that Spratling argues that predictive coding and 
biased competition models can be reconciled with one another.  

 

 
Figure 3. Reparsing of levels in the Rao and Ballard diagram, inspired by Spratling 2008.  
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Viewed this way, in the case where there is a match at the error unit, what happens is that 
there is no signal from the higher stage to the lower stage, although there is a physical 
signal coming “bottom up” in the other direction.  

Perhaps if “stage” is given a neurophysiological reading, there could be an 
interesting difference between these two parsings of the model (Spratling ibid p.7). For 
example, do neural feedback connections between cortical areas have the function of 
inhibiting the activity of error units, or enhancing the activity of representation units? (see 
Bastos et al 2012, Friston 2005, Lamme et al 1998). But this is not a difference in the 
flow of information. It is merely a difference in how this flow is realized 
neurophysiologically (and as we said, we think it could even be realized by absences of 
signals).  

Talk of “controlled hallucination” (Clark 2015, p. 14), as well as the terminology 
of “error correction”, suggests that the bottom-up signal only does the work of adjusting 
and fine-tuning the system’s representation. Certainly, the bottom-up signal is indicating 
that the prior needs adjusting, and it is specifying the appropriate direction of adjustment. 
But even in a case where the prior is much more weighted than the bottom-up estimate, 
we are still just combining two separate estimates of the stimulus in a way that is 
essentially symmetrical between processing directions. We could equally well think of 
the prior as fine-tuning the bottom-up estimate. That would be more natural in a case 
where the bottom-up signal gets more weight; but such cases are ubiquitous (Clark 
concedes as much in several passages, ibid pp. 41-42, p. 57). 

Our interpretation is further supported by considering an analogy with inter-modal 
integration. Suppose vision and touch deliver information about a common feature, such 
as the size of a ridge on an object (Ernst and Banks 2002). On a Bayesian model, the 
system’s task is to combine the information from these sources in a probabilistically 
rational way, weighting them according to their relative reliability. We are in fact able to 
accommodate reliability in this way: for example, Fetsch et al (2012) provide neural 
evidence that visual-vestibular integration in macaque monkeys is able to flexibly take 
into account the reliability of cues on a trial by trial basis. 

Now suppose that such a Bayesian cross-modal integration process is 
implemented using a “visual error correction” code, obtained from comparing the visual 
and auditory codes, feeding back and forth with the initial visual code to produce an 
integrated estimate.  It would clearly be a mistake to interpret this as making the system 
in some way more “visuo-centric” than a version of the system implemented in a 
different way. This is made vivid by considering the case where audition is given much 
more weight than vision; this is perfectly compatible with the suggested implementation, 
even though it is, if anything, most naturally described as “audio-centric” processing. 
 
3. What is being represented in the hierarchy?   
 
As we have set things up, the features represented at each level are external stimulus 
features. However, Clark sometimes writes as if it is really intrinsic features of neural 
states that are represented; “One key task performed by the brain, according to these 
models, is that of guessing the next states of its own neural economy.” (Clark 2013 
p.183). Each stage is depicted as attempting to predict the intrinsic neural state of the 



 9 

stage below, and adjusting its guess based on the bottom-up error signal. This suggests it 
is representing the neural state of the stage below. What to make of this?  

Suppose, for example, that we are representing edges at the lower stage of visual 
processing and shapes at the higher stage. My current shape representation “predicts” 
what is happening at the lower stage in the sense that it is converted into an edge 
representation (the “edge prior”), which is compared with the lower-stage edge 
representation at the subtraction unit, producing the error representation. This description 
only mentions representations of external features. However, you could adopt a kind of 
testimonial metaphor here, and regard the top-down generated edge representation as 
“predicting what the lower stage will say about edge properties”. Or, since the edge 
representations are in a neural code, you could also regard the top-down edge 
representation as predicting what the neural code of the edge representation will be at the 
lower stage. 

Clark clearly thinks that the “predicting the neural code” gloss is helpful for 
getting a feel for how the system is able to “bootstrap” its way to the right conditional 
priors linking stages, via the learning algorithm it uses. One rationale for this would be if 
we interpret the learning algorithm not as simply improving a probabilistic model of a 
predetermined feature set, but rather as also changing the feature set, by changing the 
response profiles of the representations. Then, over the longer time scale of learning, the 
only common currency is the intrinsic features of neural codes, not their contents. It is 
therefore (perhaps) helpful to think of the system as learning to predict neural codes 
rather than predicting contents; the learned contents (e.g. the edge and bar representations 
learned in Rao and Ballard’s simulation (p. 81)) are a useful side-effect of the learning 
process.  

This interpretation of the learning algorithm, and the more general idea of 
perceptual learning as motivated by the reduction of prediction error, warrant further 
discussion. The point we want to stress here is that even if perceptual learning (i.e. 
improving the transitions between stages, by e.g. changing connection strengths) is best 
understood in a way that ignores environment-directed contents, that doesn’t suggest that 
we could similarly understand perceptual updating (changing representations at 
individual stages) at short time-scales without thinking of it as operating on 
representations of external stimulus features. If we are trying to understand how the 
system achieves an accurate representation of the environment by applying a Bayesian 
analysis, then the top down predictions are helpfully understood as priors concerning the 
stimulus features, not representations of neural states. 
 
4. Perception and Action  
 
We have just been critiquing Clark’s interpretation of the predictive processing model of 
perception, partly emphasizing ways in which the model is less divergent from orthodoxy 
than he suggests. We now want to make a similar point about Clark’s account of action 
and perception in part II of Surfing Uncertainty. The account certainly has some radical 
features, nonetheless we think that some of the interpretative commentary is misleading.   
 On p. 65 Clark says: “(…) PP makes a strong proposal concerning the cognitive 
centrality of a complex looping interplay between perception and action. In fact, so 
complex, central and looping is the interplay that perception will emerge (Part II) as 
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inseparable from action, and the theoretical divisions between sensory and motor 
processing will themselves be called into question.” 
 Later Clark, quoting Friston, says: “The perceptual and motor systems should not 
be regarded as separate but instead as a single active inference machine that tries to 
predict its sensory input in all domains.” (p. 121)  

Although these passages make it sound as though accepting Clark’s version of PP 
threatens the perception/action boundary both empirically and theoretically, the picture 
we get from part II need not be given this radical interpretation (see also Shea’s 
commentary on Clark 2013).  

Action control, in this context, mostly means motor control, or the ability to 
control one’s own body. Theories of motor control tend to be concerned both with cases 
of full-on intentional action, where one tries to achieve an explicitly set goal, and with 
more reflex-like bodily activities such as catching a baseball or dodging a punch.   

In explaining motor control, researchers face problems that in some ways parallel 
the problems that arise in perception. Motor control, like perception, happens in 
conditions of uncertainty. This is a reason why Bayesian approaches are attractive here, 
subject to the usual provisos about computational plausibility.  

One source of uncertainty in motor control is given by delays in sensory and 
proprioceptive feedback (ibid, p. 114). Transmittance limitations in nerves and synapses 
produce signaling delays that would seem to impede fluid motion. In fast reaching, for 
example, the brain has to receive, and respond to, a stream of proprioceptive information 
concerning the position and trajectory of one's arm and hand, as well as information 
about the location of objects (Clark and Toribio 1994 p. 402). The problem is that, for 
fast motions, there are signaling delays in proprioceptive feedback coming from nerve 
endings, as well as in the sensory systems that inform the brain about states of the world. 
Yet we seem capable of reaching objects, generally successfully, even when the 
movement is fast.  

A particular kind of Bayesian model is often put to work to understand how this 
happens. The idea is that the brain uses a ``forward model'' – a neural network whose 
interconnected units model our arm-hand apparatus. The network emulates the interplay 
between arm-hand parameters, and it provides mock feedback in place of absent 
proprioceptive feedback. In this way, the limits of real time transmission of information 
can be circumvented to produce skilled reaching, by using top-down expectations 
concerning the projected position of the body, in combination with predictions 
concerning what the proprioceptive feedback should be. These top-down priors are 
integrated with bottom-up proprioceptive information, but the role of bottom-up 
information is limited in two ways relative to the perceptual case. First, unlike in a case 
of perceiving a novel environment, in the case of a novel motor command, the system 
does have a fairly accurate top-down model of what will happen right from the 
beginning, which can therefore carry a lot of weight in the Bayesian calculation. Second, 
because the system has this model, it can start putting it to use before getting bottom-up 
feedback, thus solving the time-delay problem. In this model, then, the bottom-up signal 
is “correcting” the forward model.  

Uncertainty is also present when we introduce goals in our understanding of 
action. The uncertainty here is given by a redundancy problem. Once a goal is set, there 
are innumerable ways of achieving it. There are innumerable trajectories my arm and 
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hand can follow once I decide to reach out for a cup of coffee. The motor system has to 
select a motor command – a command of muscle activation – from among many possible 
sequences of motor commands, discounting the commands that are not advantageous.  

Bayesian models of action control are again useful in this context. Such models – 
one strand of which is Optimal Feedback Control (or OFC) – propose to explain how the 
redundancy problem is solved by thinking that the motor control system engages in an 
unconscious form of decision-making (ibid pp. 117-119). The system uses Bayesian 
inference to estimate environmental conditions, and it then selects “optimal” motor 
commands for achieving the set goal. Optimality is characterized as relative to a cost 
function that rewards achievement of the goal, and efficiency. Roughly, in this picture, 
the motor system picks motor commands that, given the goal – reaching for coffee – and 
the hypothesized state of the world – where the coffee cup is with respect to the body – 
minimize expected costs for performing the action. The notions of a goal and of a cost 
function are central to this type of explanation.  

Since predictive processing is a particular implementation of Bayesian models, 
we might naively expect Clark to be sympathetic to Optimal Feedback Control. Instead 
Clark, following Friston, proposes an alternative that he calls “Active Inference”. Active 
inference is an extension of the predictive processing framework to the case of action: 
 
“The core idea is thus that there are two ways in which biological agents can reduce 
prediction error. The first (as seen in Part I) involves finding the predictions that best 
accommodate the current sensory inputs. The second is by performing actions that make 
our predictions come true – for example, moving around and sampling the world so as to 
generate or discover the very perceptual patterns that we predict.” (ibid, p. 121). 
 
And:  
 
“Active inference names the combined mechanism by which perceptual and motor 
systems conspire to reduce prediction error using the twin strategies of altering 
predictions to fit the world, and altering the world to fit the predictions.” (p. 122) 
 
The most radical idea here is that we can dispense with goals / cost functions, and instead 
do all the work with sensory predictions (ibid, p. 124). For example, instead of appealing 
to a goal of picking up a coffee cup to explain a bodily movement, and a motor plan for 
carrying out this goal, the account appeals directly to my expectation that I will move in a 
certain way. When this expectation isn’t met, the motor system accommodates this fact, 
not by changing my belief, but by changing the world – by moving my hand.  

There’s a question here whether this is a kind of eliminativism about goals, or 
whether they are “folded into” the predictions. We’ll treat that as a verbal issue: what 
matters is whether solely appealing to predictions gives us the conceptual and empirical 
resources to explain action control correctly.  

There are several problems in this context. First, there is the obvious point that 
there is a big difference between wanting something to happen and expecting it to 
happen. The kind of expectations involved in perception don’t have a desire-like 
functional profile, even taking into account the point that perception involves an 
expectation-driven process of moving around to better sample the world. For example, if 
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I expect to see my keys on the table, this might inform the kind of active sampling that I 
engage in, but it won’t make me put my keys on the table. This is true even if what is 
expected is a bodily movement – I can expect my body to move in a certain way, without 
intending it to move that way (Colombo 2016, Klein 2016).  

Second, as Rescorla (2017) emphasizes, the account is less explanatory than the 
OFC account in a vital respect. On both accounts, my reaching for the coffee cup in a 
certain way is partly explained by the fact that, on launching the motion, I expect it to 
unfold in a certain way. But why do I expect that? OFC has an answer to this question 
that has to do with the calculated optimality of the specific bodily trajectory given my 
goals. Active inference, by contrast, just takes these expectations as given without 
explaining them.  

Given these problems, we wonder whether Clark should favor Friston’s radical 
story over OFC or other models. Additionally, we have a concern about Clark’s claim 
that a predictive processing account of action threatens to dissolve the distinction 
between perceptual and action-oriented processing. We don’t see this as motivated by the 
framework. Clearly, the fact that perception and action use the same kind of processing 
(they are “computational siblings” (ibid, p.120)) is perfectly compatible with their being 
quite separate systems. Perception and action might deal with operating under conditions 
of uncertainty in analogous ways – by combining top-down models with sensory 
information – and they might use a similar predictive coding algorithm to approximate 
Bayes optimality. If action processing operates without a cost function, that deepens the 
analogy (although some models of perceptual processing do appeal to cost functions. See 
Mamassian et al. 2002). But why do these computational similarities ground the claim 
that perception and action are now “inseparable”? 

Clark himself seems to admit separability when he alludes to the fact that 
perception and action have different “directions of fit” (ibid, p. 121). One system aims to 
progressively change its representations to better fit the world.  The other system aims to, 
roughly, change the world to conform to its representations. The extreme view that there 
is only one kind of prediction, a “sensory-motor prediction”, in which errors can be 
accommodated either by changing the world or by changing the representation of the 
world, has the implausible implication that perception can always appropriately respond 
to error by changing the world to fit it (for example, putting my keys on the table to 
accommodate not seeing them there when I expect to). We also get the appealingly 
Buddhist, but psychologically unrealistic, conclusion that unsatisfied desires can always 
be dealt with by changing the desires.   

One could try to accommodate this point by distinguishing the contents of the 
predictions: for example, errors in predictions about proprioceptive feedback and 
sensorimotor contingencies are dealt with through initiating/altering bodily movement, 
whereas errors in predictions about external stimulus features are dealt with through 
representational changes. Indeed, Clark alludes to this difference in content (ibid, p. 121). 
Perception for action predicts how an object looks like given some movement, while 
perception considered alone predicts how an object looks independently of one’s 
movement (ibid, ch. 1). This would only deepen the case that we are dealing with 
separate systems however, since we now have both a functional and a content difference 
between sensory and action predictions. We doubt that Clark would accept such a sharp 
distinction between the contents of say, vision-for-action and vision-for-perception, but if 
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he did, then perception and action would be separate. They should not be described as 
inseparable strategies in a combined mechanism to reduce prediction error.    
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