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Abstract

Marr’s levels of analysis—computational, algorithmic, and implementation—have served cogni-

tive science well over the last 30 years. But the recent increase in the popularity of the computa-

tional level raises a new challenge: How do we begin to relate models at different levels of

analysis? We propose that it is possible to define levels of analysis that lie between the computa-

tional and the algorithmic, providing a way to build a bridge between computational- and algorith-

mic-level models. The key idea is to push the notion of rationality, often used in defining

computational-level models, deeper toward the algorithmic level. We offer a simple recipe for

reverse-engineering the mind’s cognitive strategies by deriving optimal algorithms for a series of

increasingly more realistic abstract computational architectures, which we call “resource-rational

analysis.”

Keywords: Levels of analysis; Resource-rational models; Rational process models; Computational

level; Algorithmic level; Bayesian models of cognition

1. Introduction

Marr and Poggio (1977) proposed a key methodology of cognitive science: proceed by

forming levels of analysis that can, and should, be studied independently. The three levels

of analysis identified by Marr (1982) have stood the test of time, still being the canonical

scheme for organizing formal analyses of information processing systems over 30 years

after they were first introduced. Marr’s three levels correspond to an abstract characteriza-

tion of the computational problem being solved (the “computational” level), the algorithm
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executing that solution (the “algorithmic” level), and the hardware implementing that

algorithm (the “implementation” level).

While the concrete contribution of Marr was three specific levels; the deeper contribu-

tion made by Marr and Poggio was the idea that it is valid, fruitful, and even necessary

to analyze cognition by forming abstraction barriers (which result in levels of analysis).

Subsequent work has preserved this idea, even as it has offered refinements and alterna-

tives to Marr’s scheme (e.g., Anderson, 1990; Newell, 1982; Pylyshyn, 1984). These

other schemes generally preserve the distinctions between levels identified by Marr but

make a finer distinction between algorithms and the cognitive architecture that executes

them, essentially dividing the algorithmic level into two parts. In this paper, we explore

another application of the methodology introduced by Marr and Poggio, refining Marr’s

levels by considering the possibility of levels of analysis that lie between the computa-

tional and the algorithmic.

The longevity of Marr’s scheme suggests that we should have a high bar for consider-

ing modifications to it. We believe that there are two important reasons to begin to

explore what lies between the computational and algorithmic levels. First, the recent rise

in the popularity of rational models of cognition and Bayesian analysis (e.g., Anderson,

1990; Chater & Oaksford, 1999; Tenenbaum, Kemp, Griffiths, & Goodman, 2011) has

resulted in theories of a wide range of different aspects of human cognition that are

framed at the computational level. This form of theorizing is relatively new to cognitive

psychology, which has traditionally tended to focus on the cognitive strategies—that is,

algorithms—by which problems are solved. As a consequence, we sometimes have expla-

nations of a given phenomenon expressed at different levels of analysis, and little idea as

to how those explanations should be evaluated or even if they are incompatible. Marr

made it clear that he expected theories at different levels of analysis to inform one

another, but he left open the question of how this might play out in practice. Building a

bridge between the computational and algorithmic levels is a step toward being able to

answer questions about whether theories at these different levels are compatible, and a

tool for generating theories at one level from theories at another. For example, it might

allow us to be clear when the assumptions of a Bayesian model (at the computational

level) are inconsistent with those of a connectionist model (at the algorithmic level),

addressing an ongoing debate between proponents of these two approaches (Griffiths,

Chater, Kemp, Perfors, & Tenenbaum, 2010; McClelland et al., 2010). Even more impor-

tant, it might give us a generic recipe for constructing connectionist and other psychologi-

cal process models that approximate the ideal solution expressed in a Bayesian model,

producing testable claims about cognitive processes.

A second reason to consider levels of analysis between the computational and algorith-

mic is to clarify and organize research that has begun to explore this space. A recognition

that human cognition necessarily involves making approximations or otherwise limiting

rational solutions has been a common theme in psychological theory since Simon (1955)

introduced the notion of “bounded rationality.” Anderson’s (1990) influential framework

for “rational analysis” explicitly includes a step where cognitive constraints are consid-

ered when defining a rational model. But what constraints should we assume, and when
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should we assume them? We propose that the consideration of these constraints should

be done somewhat independently of the definition of computational-level models, but that

the principle of rationality provides the key to exploring the new levels of analysis that

result.

Distinguishing between computational problems and the resources available for solving

them provides a way to build a bridge between the computational and algorithmic levels.

While there is presumably only one true cognitive architecture, there can be many differ-

ent abstractions—capturing different sets of constraints—that provide complementary

insights into human cognition. We will argue that a series of levels should be considered,

starting with weak assumptions about how the mind computes and then gradually

strengthening those assumptions to converge toward solutions that resemble the outcome

of traditional algorithmic-level analyses of human cognition. In analogy to abstract
machines in theoretical computer science, we will refer to the assumed abstractions from

the mind’s cognitive resources as abstract computational architectures and define them

by a set of basic operations and their costs. Abstract computational architectures are mod-

els of mental computation in the sense in which the Turing machine is a model of how

computers process information.

The first stop on our brief tour between levels is the computational level itself, revisit-

ing the role that rationality has come to play in defining this level. We then consider the

strategy of bridging levels by constructing “rational process models” that push the notion

of rationality toward the algorithmic level by postulating cognitive mechanisms that

resemble the approximation algorithms that statisticians and computer scientists use to

solve the problem identified by the computational level theory. This is a heuristic for sci-

entific discovery, but it is merely a heuristic. This brings us to a stronger application of

rationality to cognitive modeling, “resource-rational analysis,” which derives the strategy

that makes optimal use of finite computational resources. Finally, we use these notions to

lay the groundwork for defining a set of levels that lie between the computational and the

algorithmic.

2. Computation and rationality

Marr’s notion of the computational level has been criticized for being poorly named

and difficult to apply (Anderson, 1990; Arbib, 1987). The focus of this level is not on

computation per se, in the formal sense defined by Turing (1937) or the informal sense of

carrying out calculations, but rather on the structure of the abstract problem being solved

and the nature of its ideal solution. The problem and the solution can be defined purely

mathematically, with no requirement of conforming to any notion of computation. The

central question is what function an aspect of cognition serves, leading recent proponents

of computational-level analysis to call this approach a “function-first” strategy (Griffiths

et al., 2010).

Anderson (1990) made the important observation that an implicit adaptationist princi-

ple underlies the idea of computational-level analysis: We should expect ideal solutions
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to the problems that human beings face to provide insight into human cognition only to

the extent that human minds solve those problems well. Making this adaptationist princi-

ple explicit led Anderson to suggest a refined strategy for finding computational-level

explanations, founded on the principle of rationality, which he states as the idea that “the

cognitive system operates at all times to optimize the adaptation of the behavior of the

organism” (Anderson, 1990, p. 28). He then laid out a six-step program for applying this

system (Anderson, 1990, p. 29):

1. Precisely specify what are the goals of the cognitive system.

2. Develop a formal model of the environment to which the system is adapted.

3. Make the minimal assumptions about computational limitations.

4. Derive the optimal behavioral function, given items 1 through 3.

5. Examine the empirical literature to see if the predictions of the behavioral function

are confirmed.

6. If the predictions are off, iterate.

There are several interesting features of this program—not least that there is no stop-

ping criterion, which would concern critics of rational models (Bowers & Davis, 2012;

Jones & Love, 2011)—but our focus here will be on Step 3.

What role should constraints play in computational-level theories? If the goal is really

to characterize the problem being solved and its ideal solution, computational limitations

have little role to play. Rather, they seem like a device for bringing that ideal solution

into closer alignment with human cognition. If human beings have only finite computa-

tional resources—processing power, memory, and attention—to be used in solving a

problem, then the best they can do is to approximate the ideal solution using those lim-

ited resources. But taking these resources into account is already a move toward the algo-

rithmic level, considering the kinds of cognitive processes that might be available to

execute a computational-level solution.

Rather than blurring these lines and building constraints into computational-level theo-

ries, we suggest a different approach: Define the computational-level theory without con-

sidering limitations on its execution, and then explore the consequences of those

limitations as a further analysis that brings us closer to an algorithmic-level theory (see

Fig. 1). Various proposals about limitations—or alternatively abstract computational

architectures—provide us with levels of analysis between the computational and the algo-

rithmic, and the principle of rationality provides us with a methodology for developing

models at those intermediate levels. In the remainder of the paper, we discuss two recent

lines of research that illustrate this approach.

3. Rational process models

The main role that computational limitations played in the theories presented by

Anderson (1990) was in justifying approximations to challenging probabilistic computa-

tions. For example, in Anderson’s rational model of categorization (later appearing in
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Anderson, 1991), objects are assigned to clusters by considering each object in turn and

maintaining only a single clustering, rather than by evaluating or averaging over all possi-

ble clusterings. This is certainly more plausible as a cognitive model, but building in this

constraint misses two opportunities: to compare human behavior to the ideal predictions

from an unconstrained computational-level account, and to explore the consequences of

adopting different approximation schemes.

The computational challenges posed by rationality are not just a problem for human

minds—they are also faced by computer scientists and statisticians who work with com-

plex probabilistic models. These scientists have developed a variety of strategies for

approximating the resulting computations, and those strategies are a source of hypotheses

about the cognitive processes by which the mind approximates the optimal solutions iden-

tified by computational-level theories. The result is what has been dubbed a “rational

Fig. 1. The algorithmic level of analysis takes into account the cognitive resources available for solving a

problem, but resource constraints are not normally part of analyses at the computational level. This gap can

be bridged by considering a series of increasingly more realistic models of mental computation (abstract com-

putational architectures), and resource-rational analysis can be used to derive the algorithm that makes opti-

mal use of computational resources assumed by each of these models. The resulting algorithm can then be

interpreted as a rational process model. As the model of mental computation becomes more realistic, the

resulting resource-rational models become psychological process models.
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process model” (Sanborn, Griffiths, & Navarro, 2010; Shi, Griffiths, Feldman, & Sanborn,

2010).

Anderson’s rational model of categorization could be interpreted as a rational process

model, using an approximation strategy based on a greedy maximization algorithm. But

there are other approximation algorithms that are directly applicable to the problem it

was used to solve. Sanborn, Griffiths, and Navarro (2006) and Sanborn et al. (2010)

showed how two algorithms commonly used to perform probabilistic inference in related

models in statistics—Markov chain Monte Carlo and particle filters—could be used to

approximate the average over all clusterings in Anderson’s model. Both are Monte Carlo

algorithms, producing an approximation that is based on a sample of clusterings. With a

large sample, the algorithms give a close approximation to the ideal rational model, mak-

ing it possible to compare this model against human behavior. With a small sample, they

deviate from this ideal in systematic ways, producing biases (such as order effects) that

are easy to compare against human performance. Such comparisons yield clues about the

computational constraints that might be relevant to explaining human behavior.

Rational process models are valuable not just as a source of hypotheses about how

people might go about approximating challenging probabilistic computations, but as a

way to reinterpret existing proposals about psychological processes. For example, Shi and

colleagues (Shi, Feldman, & Griffiths, 2008; Shi et al., 2010) showed that exemplar mod-

els—a popular class of cognitive process models based on memorizing examples and

recalling those examples most similar to a current stimulus—can be interpreted as

approximating Bayesian inference using a Monte Carlo algorithm known as importance

sampling. This connection establishes a direct link between levels of analysis and a

simple way to define a process model that implements a Bayesian model (even in com-

plex settings such as intuitive physics, e.g., Sanborn, Mansinghka, & Griffiths, 2013). It

is also a source of interesting connections between Bayesian inference and connectionist

architectures (Shi & Griffiths, 2009).

Considering different algorithms for approximating the optimal solution can inspire

abstract computational architectures that are useful for defining models that lie between

the computational and algorithmic levels. For instance, drawing one sample from the pos-

terior probability distribution per unit time is the elementary operation of one such

abstract computational architecture, namely the bounded sampling agent. That is, we can

consider a class of models that approximate rational solutions under the assumption that

samples from relevant probability distributions are available. Digging deeper, we can con-

sider specific schemes for generating those samples—Markov chain Monte Carlo, particle

filters, or importance sampling—as providing a set of abstract computational architectures

that each have their own constraints in terms of time, memory, and the conditions under

which they succeed and fail. By exploring the properties of these abstract computational

architectures, we can work toward having a well-understood, standardized set of methods

for moving computational-level models in the direction of proposals about the algorithmic

level.

Process models based on approximation algorithms (such as Monte Carlo methods) are

rational in that they are generated from a computational-level solution to a problem of
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cognition. However, this is a weak form of rationality—rationality by derivation, or

rationality in asymptote (similar to the notion of “calculative rationality” presented in

Russell, 1997). Another way to push the principle of rationality below the computational

level is to consider algorithms that are optimal solutions when a specific abstract architec-

ture, such as sampling, is used. For example, rather than merely assuming a Monte Carlo

approximation, we might ask what the best way to use a set of random samples might be.

In the next section, we lay out a methodology based on this principle.

4. Resource-rational analysis

We propose a concrete methodology—which we call resource-rational analysis—for

establishing and studying levels of analysis between the computational and the algorith-

mic level. Like Anderson’s schema for developing rational models of cognition, a

resource-rational model can be developed in four simple steps:

1. Function: Formalize the problem that the cognitive mechanism solves and charac-

terize the optimal solution (computational level of analysis).

2. Model of mental computation: Posit a family of algorithms that approximate the

optimal solution and their computational costs. This can be done by defining an

abstract computational architecture by a set of elementary operations (e.g., to draw

one sample from the posterior distribution) and their costs (e.g., based on execution

time).

3. Optimal resource allocation: Find the algorithm in this class that optimally trades

off approximation accuracy against time and other resources (e.g., by maximizing

expected utility per unit time or the value of computation; see below).

4. Evaluate and refine: Compare the model’s predictions to human behavior. Revise

the functional characterization (Step 1), or the model of mental computation (Step

2) and the resulting algorithm (Step 3) accordingly. Alternatively, one might pro-

ceed to the next level below by modeling how the basic operations might be

approximated or considering additional resource constraints.

By explicitly positing a class of possible algorithms and a cost to the resources used

by these algorithms, we can invoke an optimality principle to derive the algorithm that

will be interpreted as a rational process model. Resource-rationality is thus a principle for

analyzing an information-processing system at an intermediate level defined by an ideal-

ized model of mental computation. This method enables us to reverse-engineer not only

the problem that a system solves (computational level of analysis) but also its computa-

tional resources. The process might converge to a cognitive architecture similar to ACT-R
(Anderson et al., 2004), EPIC (Meyer & Kieras, 1997), or SOAR (Laird, 1987), or to

something entirely different.

Importantly, the transition from Step 1 to Step 2 need not be ad hoc for a particular

task or cognitive ability. First, there are very general “algorithm recipes” that take a

(somewhat arbitrary) computational-level model and generate a (large) family of
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approximate solution algorithms. Many such “compilation” methods exist in the computer

science literature that we can use to generate new levels of analysis for particular cognitive

abilities. For instance, particle filtering (mentioned above) is a general approach that leads

to specific algorithms carrying in the number of particles, the resampling criteria, and so

on (Abbott & Griffiths, 2011). This results in infinitely many algorithms that can have

qualitatively different properties (e.g., one particle vs. millions of particles). Steps 2 and 3

allow us to find reasonable points within this algorithmic profusion, which we may then

compare to human behavior. To the degree that evolution, development, and learning have

adapted the system to make optimal use of its finite computational resources, resource-

rational analysis can be used to derive the system’s algorithm from assumptions about its

computational resources. Second, the cost of computation can be formally derived from

the opportunity cost of time (Vul, Goodman, Griffiths, & Tenenbaum, 2014).

To formalize Steps 2 and 3, a sequence c of elementary operations (C) is resource-

rational, if it maximizes the expected utility of the result minus the cost of computation

(Lieder, Griffiths, & Goodman, 2013). A general version of this definition can be formu-

lated in terms of the value of computation (VOC) (Lieder, Goodman & Huys, 2013):

c ¼ argmax
c2Cn

VOCðcÞ

VOCðcÞ ¼ EPðBjcÞ max
a

EPðQ;SjBÞ Qðs; aÞ½ �
h i

� costðcÞ;

where Q(s,a) is the unknown expected cumulative reward of taking action a in the current

state s, and B is the agent’s belief about Q and s. Each computation c 2 C costs time and

energy (cost(c)) but may improve the system’s decision by changing its belief B. The for-

malization of resource rationality in terms of the value of computation was inspired by

earlier research in artificial intelligence (Hay, Russell, Tolpin, & Shimony, 2012; Horvitz,

1988; Russell, 1997; Russell & Wefald, 1991a).

Resource-rational analysis has been applied to decision-making (Lieder, Hsu, & Grif-

fiths, in press; Vul, Goodman, Griffiths, & Tenenbaum, 2009), prediction (Lieder et al.,

2013), and planning (Lieder et al., 2013), yielding predictions that are surprisingly differ-

ent from the optimal solution to the problem defined at the computational level. Vul et al.

(2014) analyzed an abstract computational architecture whose elementary operation was

to sample from the posterior distribution on whether or not an action will yield a reward.

The analysis found that as the cost of sampling increases, the resource-rational algorithm

changes from expected utility maximization (i.e., infinitely many samples) to probability

matching (i.e., using a single sample). For a wide range of realistic computational costs,

the optimal number of samples was surprisingly close to one, indicating that—in contrast

to expected-utility theory—resource-rationality is consistent with probability matching

(Herrnstein & Loveland, 1975).

The algorithms posited in Step 2 of our recipe may involve computationally difficult

steps that we assume to be solved ideally. To borrow a notion from theoretical computer

science, we might assume that the abstract computational architecture has access to an
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“oracle” that perfectly solves a complex problem. These steps are potential loci for the next

resource-rational approximation, as indicated in Step 4. For instance, the availability of per-

fect posterior samples was assumed in the analysis performed by Vul and colleagues, but

generating even a single perfect sample from the posterior distribution can be a very hard

problem. This suggests forming a further level of analysis by replacing the basic operation

of drawing a perfect sample by performing one step of an approximate sampling algorithm,

such as the Metropolis-Hastings algorithm (propose and evaluate a potential adjustment to

the current sample). A resource-rational analysis of this more complex abstract computa-

tional architecture predicts that the system should, in many situations, tolerate biased sam-

ples in exchange for spending less time computing (Lieder, Goodman, & Griffiths, 2013;

Lieder et al., 2013). A model based on this analysis predicts a phenomenon that has been

taken as evidence for human irrationality—anchoring and adjustment, in which people

“anchor” on a first guess and “adjust” it insufficiently (Tversky & Kahneman, 1974). Taking

into account the cost of computation reveals that this is exactly what an abstract computa-

tional architecture whose elementary operations are the propose and the accept/reject step of

the Metropolis-Hastings algorithm should do.

These examples show how resource-rational analysis can reconcile rational models with

the idea that human cognition is dominated by simple heuristics (Gigerenzer & Todd,

1999; Tversky & Kahneman, 1974). Resource-rational analysis of abstract computational

architectures provides a rigorous way to derive the heuristics that represent a good compro-

mise between accuracy and effort (see also Lieder et al., in press). Resource-rational analy-

sis can also be used to understand how bounded agents can possibly solve extremely

challenging problems, such as planning in a complex, partially unknown environment, and

to explain how different styles of information processing arise from differences in beliefs,

utility functions, and cognitive resources (e.g., Lieder et al., 2013).

Resource-rational analysis opens up several avenues for future research. First, future

studies may analyze and reverse-engineer increasingly more realistic models of mental

computation, pushing rational analysis increasingly further down toward the algorithmic

level. More realistic models of mental computation may provide elementary operations

for searching through long-term memory, allocating attention, storing information in

working memory, comparison, modification, and combination of information. More realis-

tic abstract computational architectures may also comprise multiple, hierarchically struc-

tured sub-systems. Second, instead of assuming that the mind makes optimal use of its

computational resources, future research may investigate whether and how the mind

learns to compute resource-rationally. Metacognition is an extremely important aspect of

intelligent behavior, and our framework makes it possible to formalize exactly what meta-

cognition should do.

5. Relation to previous work

The idea of combining rationality and cognitive limitations to derive cognitive

mechanisms is not new. For instance, the activation mechanism of the declarative
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memory modules of the ACT-R architecture is based on a rational analysis of memory

(Anderson et al., 2004). However, in contrast to resource-rational analysis, rational analy-

sis itself did not provide a recipe for deriving algorithms and did not clearly distinguish

between different levels of analysis.

The theoretical frameworks closest to resource rationality are boundedly rational analysis
(Icard, in press) and computational rationality (Lewis, Howes, & Singh, in press), which

builds on cognitively bounded rational analysis (Howes, Lewis, & Vera, 2009). Resource

rationality, boundedly rational analysis, and computational rationality are all mathematical

frameworks that span levels of analysis and were inspired by Russell’s (1997) notion of

bounded optimality. Consequently, all three approaches construe agents as acting optimally

subject to cognitively motivated constraints. Resource rationality and boundedly rational

analysis differ from computational rationality in how they characterize the constraints and

the problem being solved. Concretely, they characterize the constraints by the computational

costs imposed by an abstract computational architecture, and the problem being solved is

construed as optimizing a function that combines accuracy and computational cost. In the

limit where these costs become negligible, they recover the pure computational-level

account. Resource-rationality also leverages the insights that approximation algorithms from

computer science, machine learning, and statistics give into resource-efficient computation

to derive hypotheses about the mind’s abstract computational architecture. By contrast,

computational rationality characterizes constraints by concrete psychological assumptions

about an underlying cognitive architecture, and the problem being solved is construed as

finding the best strategy supported by that architecture. In this framework, whether or not

computational cost is taken into account depends on their impact on behavior. Another dif-

ference is that resource rationality formalizes optimal resource allocation as the solution to

a rational meta-reasoning problem (Russell & Wefald, 1991b), providing further links to a

literature on meta-reasoning in artificial intelligence research.

Halpern and Pass (2011) have developed a concept similar to resource rationality,

which they call algorithmic rationality. However, they apply it primarily in the context

of game theory. By contrast, our emphasis is on leveraging computational-level theories

and approximation algorithms to develop psychological process models of individual cog-

nition.

So far we have only considered the cost of time, but resource-rational analysis can also

incorporate metabolic costs (Gershman & Wilson, 2010) and mental opportunity costs

(cf. Kurzban, Duckworth, Kable, & Myers, 2013). Although the rational process models

presented above were inspired by sampling algorithms, resource-rational analysis can also

leverage variational inference (Gershman & Wilson, 2010; Sanborn & Silva, 2013) and

other approximation algorithms.

6. Conclusion

The principle of rationality has tended to be associated with the idea of developing

models of cognition at the computational level, but we think it can be applied more
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broadly. Once we take into account that having to act in real time limits how much

computation an agent can perform, rationality becomes a fundamental tool for building a

bridge from the computational to the algorithmic level. Whether it is asymptotic rational-

ity, as assumed in rational process models, or the rational use of finite resources, as

assumed in resource-rational models, we see this principle as playing a major role in the

refinement of the notion of levels of analysis as the needs of cognitive science change.

While our focus here has been on algorithms, it is worth noting that a similar kind of

argument can be made about representations (cf. Tenenbaum et al., 2011). As has been

pointed out in the past (Anderson, 1978), algorithms and representations go hand in hand.

This is an important point in the context of recent debates about Bayesian models of cog-

nition (e.g., Griffiths et al., 2010; McClelland et al., 2010), in which the fundamental dis-

agreement is not about whether human minds and brains use statistics, but what kinds of

representations those statistics are computed over. Developing a similarly rigorous treat-

ment of the implications of different representational assumptions at the computational

level for models at the algorithmic level would be an important step towards resolving

these debates.
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