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From language learning and categorization to visual percep-
tion and motor control, the tasks that the brain must solve 
require the use of noisy, incomplete information about the 
world to make generalizations and future decisions. How do 
people make inductive inferences and guide their behavior on 
the basis of such limited data? The computational challenge in 
understanding human behavior in these complex tasks is fun-
damentally statistical; therefore, over the past two decades, 
researchers have started to answer this question by using prob-
abilistic models of cognition to analyze human inferences in 
such tasks (Anderson, 1990; Ashby & Alfonso-Reese, 1995; 
Kersten, Mamassian, & Yuille, 2004; Levy, Reali, & Griffiths, 
2009; Sanborn, Griffiths, & Navarro, 2010; Trommershäuser, 
Maloney, & Landy, 2008).

Probabilistic models of cognition are cast at what Marr 
(1982) called the computational level. They specify the ideal 
solution to an abstract statistical problem that people must 
solve: Given the decision that must be made, how should peo-
ple use the limited available information? (See Table 1.) 
Researchers compare human behavior with candidate ideal 
solutions to characterize the assumptions that guide human 
inductive inference. This approach is quite different from tra-
ditional methods used to study the mind. Historically, cogni-
tive psychologists have defined models at Marr’s algorithmic 
level, focusing on identifying the cognitive processes involved 
in representing and manipulating information. Neuroscience 
has added analyses at Marr’s implementation level, examining 

how these cognitive processes might be realized in the brain. 
This range of approaches raises a basic question: How are 
insights at these different levels of analysis connected?

The Importance of Bridging Levels of 
Analysis
Understanding the relationships among results from these 
different levels of analysis is central to evaluating the contri-
butions that probabilistic models of cognition can make  
to psychology. In the 30 years since Marr described the com-
putational level, the strategy of seeking computational-level 
explanations has grown in popularity. As probabilistic mod-
els have been applied to more aspects of cognition, it has 
become increasingly important to understand the implications 
of such computational-level analyses for algorithmic- and 
implementation-level analyses. Elucidating this relationship 
can inform both predictions across tasks and the theoretical 
constraints that hold between levels of analysis.

On the empirical side, a fruitful strategy for identifying 
cognitive processes is to look for ways in which human behav-
ior deviates from ideal solutions obtained from computational 
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Abstract
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analyses. The heuristics and biases research program (Tversky 
& Kahneman, 1974) provides one of the best examples of this 
approach. However, this strategy requires an understanding of 
when such deviations reflect mistaken assumptions about 
ideal solutions on the part of the researcher (often a result of 
misunderstanding the problem people are solving) and when 
they provide clues about the cognitive and neural processes by 
which people approximate those ideal solutions. Probabilistic 
models of cognition at the computational level can make this 
strategy for identifying cognitive processes applicable in a 
wider range of domains by expanding the set of problems for 
which we know the ideal solutions.

On the theoretical side, we need to know how particular 
probabilistic models constrain and are constrained by particu-
lar theories at the algorithmic or implementation level—or 
whether these accounts are independent. For example, the 
recent debate between proponents of probabilistic and connec-
tionist models (Griffiths, Chater, Kemp, Perfors, & Tenen-
baum, 2010; McClelland et al., 2010) emphasized that many 
probabilistic models are defined in terms of structured, dis-
crete representations, such as rules and grammars, whereas 
connectionist models use continuous, graded representations 
that can mimic discrete structures when appropriate. However, 
because these models are cast at different levels of analysis, it 
is not clear whether this representational discrepancy reflects 
a fundamental incompatibility. In general, we cannot know 
whether a given probabilistic model is inconsistent with par-
ticular cognitive or neural processes unless we identify con-
nections between computational-level models and models at 
the algorithmic and implementation levels.

A Strategy for Bridging Levels of Analysis
When he proposed the idea of different levels of analysis for 
information-processing systems, Marr (1982) expected that 
there would be constraints that hold between levels. Success-
ful computational-level analyses impose a strong constraint on 
analyses at the algorithmic and implementation levels: What-
ever form those cognitive and neural processes take, they need 
to approximate the solution to the computational problem—
after all, people somehow make sensible decisions and infer-
ences on the basis of limited available data much of the time. 
Similarly, algorithmic- and implementation-level analyses 

constrain computational-level analyses: The information 
available for analysis at the computational level is determined 
by limitations identified at the algorithmic and implementa-
tion levels. To take a simple example, people must perceive 
the world through biological sensors and make decisions using 
their brains. Just as the structure of organisms constrains evo-
lutionary solutions to the problems posed by their environ-
ments, the structure of the human mind and brain should 
constrain people’s solutions to the computational problems 
they consider.

In line with this logic, a persistent match between human 
behavior and the predictions of a probabilistic model suggests 
that the cognitive and neural processes producing this behav-
ior are somehow approximating probabilistic inference. This 
observation leads to a strategy for bridging levels of analysis: 
Consider the best algorithms for approximating probabilistic 
inference in computer science and statistics as candidate mod-
els of cognitive and neural processes. Such rational process 
models (Sanborn et al., 2010; Shi, Griffiths, Feldman, & San-
born, 2010) may elucidate the processes operating at the algo-
rithmic and implementation levels but also provide a direct 
link to the computational level.

Rational process models differ from traditional process 
models in cognitive psychology, which postulate a set of psy-
chological mechanisms and examine how those mechanisms 
can be combined to model behavior. In contrast, proposing a 
rational process model involves identifying an algorithm for 
approximating probabilistic inference, determining whether 
the components of the algorithm are consistent with what we 
know about cognitive processes, and then examining how well 
the model fits behavior. The resulting models can approximate 
probabilistic inference arbitrarily well for situations in which 
sufficient time and memory are available, but they deviate 
from ideal solutions in systematic ways that can capture human 
behavior for situations in which information-processing res-
ources are limited.

Developing rational process models bridges the computa-
tional and algorithmic levels in two ways. First, it involves 
considering a continuum of models: At one end is ideal perfor-
mance; at the other, a systematic pattern of deviations from 
this ideal that depends on the particular algorithm being used. 
These models are thus directly connected to and constrained 
by the computational-level analysis, with the strength of the 
constraint being reduced as the limitations on time and space 
imposed on the algorithm increase. Second, the way in which 
these models deviate from the ideal solution is not arbitrary. 
The algorithms that are used are the best solutions that com-
puter scientists and statisticians have developed for solving 
problems when time and space are limited. As a consequence, 
rational process models can be viewed as pushing the principle 
of optimization that underlies computational-level accounts 
down to the algorithmic level, representing our best guess at a 
strategy that human minds could use to solve a computational 
problem given particular information-processing constraints.

Table 1. Levels of Analysis Identified by Marr (1982)

Level of analysis Goal

Computational Identify the abstract computational problem to 
be solved and its ideal solution

Algorithmic Identify the algorithm and representation used 
in executing (or approximating) the solution

Implementation Identify the physical process underlying the 
algorithm
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Monte Carlo as a Psychological Mechanism

The common thread running through all probabilistic models 
of cognition is the use of Bayesian inference to combine avail-
able data with prior beliefs in order to form new beliefs that 
can be used to guide behavior. Bayesian inference provides a 
computational-level account of belief revision (and, more gen-
erally, of learning and inductive inference) by describing 
beliefs as probability distributions over possibilities. Assume 
that a learner entertains a set of hypotheses about something 
(say, which of a number of possible acquaintances is calling 
her cell phone) and represents her degree of belief in each 
hypothesis h with a probability p(h). The resulting distribution 
is referred to as the prior distribution because it indicates the 
learner’s degree of belief in the likelihood of each hypothesis 
before any data are observed (in our example, this might 
reflect the frequency with which the learner’s acquaintances 
call her, as well as anticipated calls). After observing some 
data d (say, the area code of the caller), the learner needs to 
revise these degrees of belief to obtain a posterior distribution 
p(h | d). This is done by applying Bayes’ rule,

p h d
p d h p h

p d h p h
h

( | )
( | ) ( )

( | ) ( )
=

′ ′
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where p(d | h), the likelihood, indicates the probability of d if 
h is true (how likely each possible caller is to have a phone 
number with a particular area code), and the sum in the denom-
inator ranges over all hypotheses. In the context of real cogni-
tive tasks, the actual use of Bayes’ rule to calculate the result 
quickly becomes intractable because a very large number of 
hypotheses must be compared. Bayesian inference therefore 
requires some algorithm to allow for approximation by human 
minds and brains.

What cognitive and neural processes are candidates for 
approximating the computational-level solutions identified by 
Bayes’ rule? One highly successful strategy for approximating 
probabilistic inference in computer science and statistics is the 

Monte Carlo principle: Instead of using the probability distri-
bution itself to perform computations, use a number of sam-
ples from that distribution, each randomly selected with a 
frequency proportional to its probability in the full distribu-
tion. Different Monte Carlo algorithms are used to approxi-
mate probabilistic inference across a range of circumstances, 
and these algorithms provide a rich source of hypotheses about 
possible rational process models (see Table 2).

The Monte Carlo algorithms we consider all have an impor-
tant property: If they use enough samples, their answers will 
be exactly the same as those of computations performed with 
the entire probability distribution. This means that the ideal 
behavior indicated by Bayes’ rule can be achieved by these 
algorithms. However, these algorithms can also be used to 
generate answers when the resources for solving a problem are 
limited. To do this, we just use a small number of samples. 
Reducing the number of samples can introduce systematic 
deviations from Bayesian inference, which we can look for in 
human behavior as a strategy for identifying the algorithms 
that people might be using (just as particular biases were used 
as clues about the heuristics that guide people’s judgments by 
Tversky & Kahneman, 1974).

The idea that people might approximate probabilistic infer-
ence by sampling connects to a long literature in cognitive 
psychology. Sampling appears as a basic component of a vari-
ety of psychological theories of choice and decision making 
(Busemeyer, 1985; Luce, 1959; Stewart, Chater, & Brown, 
2006). Moreover, sampling is often implicitly used in probabi-
listic models of cognition as a result of the assumption that 
people make judgments with frequency proportional to their 
probability (a strategy known as probability matching), which 
is consistent with using only a few Monte Carlo samples to 
make a judgment.

Although a few samples are insufficient to adequately 
approximate a probability distribution, decisions based on 
even one sample can be almost as good as the ideal calcula-
tion, and they may even be optimal in the long run if obtaining 
additional samples is cognitively demanding (Vul, Goodman, 
Griffiths, & Tenenbaum, 2009). Behavior consistent with the 

Table 2. Sophisticated Monte Carlo Methods for Approximating Bayesian Inference

Algorithm Purpose Example behaviors captured Example applications

Importance  
sampling

Approximating the posterior  
distribution using only samples  
from the prior distribution

Extrapolations from training  
trials

Modeling reproductions from memory of 
perceptual stimuli (Shi, Griffiths, Feld-
man, & Sanborn, 2010)

Particle filter Updating a posterior distribution  
over hypotheses as more data  
are observed

Order effects when new  
information is encountered

Learning categories as exemplars are 
revealed sequentially (Sanborn, Griffiths, 
& Navarro, 2010) and understanding 
sentences as words are heard (Levy, 
Reali, & Griffiths, 2009)

Markov chain  
Monte Carlo

Exploring a space of hypotheses  
while maintaining a single  
hypothesis at a time

Change of beliefs over time  
without new information

Bistable perception, whereby people 
move stochastically between interpre-
tations (Gershman, Vul, & Tenenbaum, 
2012)

(1)
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use of a few samples to make judgments occurs in experiments 
where participants make multiple guesses using the same 
impoverished knowledge. For instance, multiple guesses 
about obscure facts contain independent error, so that the aver-
age of two guesses from one person is more accurate than 
either guess alone (Vul & Pashler, 2008). In the remainder of 
this section, we review some preliminary results that illustrate 
how Monte Carlo methods might provide insight into how 
people approximate probabilistic computations.

One intuitive method for approximating probabilistic infer-
ence is to retrieve memories of past events that were similar to 
a current event. This algorithm turns out to be a specific form 
of a Monte Carlo method known as importance sampling, 
whereby samples are drawn from a distribution other than the 
target distribution and then reweighted to approximate a sam-
ple from the target distribution (see Robert & Casella, 2004). 
A simple importance-sampling algorithm for Bayesian infer-
ence involves sampling hypotheses h from the prior distribu-
tion p(h) and then weighting those hypotheses by the likelihood 
function p(d | h) on observing data d to obtain an approxima-
tion to the posterior distribution p(h | d). The events remem-
bered from the past act as samples from the prior distribution, 
and the similarity function corresponds to the likelihood. This 
algorithm may sound familiar, as it can be shown to be for-
mally equivalent to classical exemplar process models. This 
simple rational process model predicts human behavior in a 
variety of tasks that have been analyzed using probabilistic 
models of cognition (Shi et al., 2010).

When people must update their beliefs over time as new 
information arrives, they often deviate from ideal behavior in 
systematic ways. One example is order effects: The order in 
which people receive information affects their judgments, 
even in cases where computational-level analyses say it should 
not (see Sanborn et al., 2010, for examples). These effects can 
be captured by Monte Carlo algorithms known as particle fil-
ters, which represent a posterior distribution with a set of sam-
ples that is updated as new data become available (see Robert 
& Casella, 2004). Because the representation of the learner’s 
beliefs is reduced to a few hypotheses sampled from the poste-
rior distribution, it becomes easy for hypotheses that were ini-
tially supported by the data to dominate even when they are no 
longer justified. Particle filters have been used to explain order 
effects in category learning that are problematic for computa-
tional-level models to account for (Sanborn et al., 2010), as 
well as “garden path” effects in sentence processing (Levy  
et al., 2009) and the detection of changes in the distribution 
from which events are drawn (Brown & Steyvers, 2009).

In other situations, people deviate from purely computa-
tional-level analyses because they have to think: Despite see-
ing all the data, people do not immediately know a solution, 
but they slowly come up with one over time, perhaps changing 
their mind several times in doing so. Perceptual bistability 
provides an interesting example of a case in which beliefs 
change over time without the addition of new information as 
people switch between possible interpretations of a visual 

object. Markov chain Monte Carlo (MCMC; see Robert & 
Casella, 2004) algorithms provide a way to understand how 
people might change their beliefs even without observing new 
data by exploring a complex space of hypotheses while con-
sidering only one hypothesis at a time. The most common 
class of MCMC algorithms is based on the idea of taking a 
random walk through hypotheses, proposing local changes to 
the current hypothesis h, and accepting a proposed variant h’ 
on the basis of its relative posterior probability p(h’ | d)/p(h | 
d). Hypotheses that better explain the data are more likely to 
be accepted, and, in the long run, the proportion of times the 
random walk visits a given hypothesis h converges to its pos-
terior probability p(h | d). When such random-walk MCMC 
algorithms are applied to probabilistic models of vision to 
infer the latent cause underlying a presentation of different 
images to the left and right eyes, the result exhibits the dynam-
ics of binocular rivalry, including the distribution of switching 
times, patchy perception, and traveling waves (Gershman, 
Vul, & Tenenbaum, 2012). Although a purely computational-
level account can explain why there are two stable percepts in 
bistable phenomena (i.e., the two percepts correspond to two 
hypotheses that have high probability in the posterior distribu-
tion), these results represent promising initial steps toward the 
idea that a rational process model based on MCMC can also 
capture the rich dynamics of bistable perception.

Prospects and Challenges for Rational 
Process Models
There are several appealing features of process models based 
on approximate inference algorithms for computational-level 
models. First, and most important, these process models make 
an explicit connection to the computational level, thus bridg-
ing levels of analyses. For example, the identification of 
exemplar models as a form of importance sampling strength-
ened the connection between existing process and computa-
tional-level models (Shi et al., 2010). Second, while forming 
such a bridge, the computational and algorithmic levels remain 
partitioned, thus allowing for greater modularity of theories in 
the creation of novel models of new tasks. For example, par-
ticle filters can be used to explain phenomena in category 
learning (Sanborn et al., 2010), sentence processing (Levy  
et al., 2009), and change-point detection (Brown & Steyvers, 
2009), with a single algorithm that is applicable across differ-
ent computational-level models. Third, the explicit constraints 
from the computational level tend to increase the parsimony of 
the resulting process model because the few free parameters 
that remain must produce ideal behavior in the limiting case of 
infinitely many samples. Consequently, the whole range of 
parameter settings will often produce reasonable behavior, 
which can then be used to explicate individual differences 
(e.g., Brown & Steyvers, 2009). Finally, even with parameter 
settings that yield notable deviations from optimal solutions, 
process models based on Monte Carlo principles can often 
produce average behavior that matches the ideal solution. This 
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explains how individuals might use approximation algorithms 
in each specific computation but the average behavior of an 
individual across multiple settings or of many individuals in 
one setting ends up resembling the ideal solution (Shi et al., 
2010). The explicit approximation of probabilistic inference 
can thus potentially yield a better match to human behavior 
than an arbitrary process model, with greater parsimony and 
generality across tasks.

Despite these potential advantages of rational process 
models, building such models presents some considerable 
challenges. First, there is often uncertainty about a given per-
son’s overall goal in a task and about the structure of the 
computational-level model; thus, there is ambiguity about 
how to interpret specific deviations from our best guess 
about ideal behavior. Second, there are many Monte Carlo 
methods that can be used to approximate Bayesian inference, 
each with different behavioral deviations; therefore, the idea 
of exploring these methods only weakly constrains the set of 
models we might consider.

Identifying candidates for rational process models can 
potentially be facilitated by the fact that Monte Carlo methods 
have been developed to be computationally efficient for par-
ticular kinds of problems. We outlined some of the methods 
designed to solve specific kinds of problems—such as the use 
of particle filters for sequentially updating beliefs—in the pre-
vious section. A strategy is therefore to investigate algorithms 
that are suitable for solving the problem that people face in a 
given task and then to determine whether the algorithm’s sig-
nature weaknesses (e.g., primacy effects from particle filters) 
are present in people’s behavior. Likewise, we can investigate 
whether the algorithms that people use to solve particular 
problems are well-matched to the statistical structure of those 
problems—a kind of rational metacognition.

Although our focus in this article has been on cognitive pro-
cesses suggested by Monte Carlo methods, a similar approach 
might also shed light on the neural processes that support prob-
abilistic inference. Recent papers have shown how simple neu-
ral circuits can implement algorithms such as importance 
sampling (Shi & Griffiths, 2009) and how variability in neural 
responding might be interpreted in terms of sampling (Fiser, 
Berkes, Orban, & Lengyel, 2010). Since different sampling 
methods are better suited for different problems and provide 
good models of different psychological phenomena, we might 
expect that the brain would employ not just one mechanism for 
probabilistic inference, but many. Investigating this possibility 
is an exciting direction for future research.

Conclusion
Determining the empirical and theoretical implications of prob-
abilistic models of cognition requires understanding how differ-
ent levels of analysis are related. Rational process models 
provide one strategy for constructing a bridge between levels of 
analysis, using the constraints provided by computational-level 

theories while incorporating ideas about cognitive and neural 
processes. Monte Carlo methods, which are based on the prin-
ciple of sampling from a probability distribution, have proved 
a rich source of such models so far. Other strategies for bridg-
ing levels of analysis exist, such as starting with process mod-
els and determining what computational-level problem they 
appear to solve, as Ashby and Alfonso-Reese (1995) did for 
categorization. Ultimately, we hope that the use of these differ-
ent strategies will lead to a more complete understanding of 
how people perform the amazing feats of learning and infer-
ence that characterize human cognition, all the way from 
abstract computational problems and their solutions to concrete 
neural processes.
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