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Bayesian models in cognitive science
and artificial intelligence operate over
domains such as vision, motor control
and language processing by sampling
from vastly complex probability
distributions.

Such models cannot, and typically do
not need to, calculate explicit
probabilities.

Sampling naturally generates a variety
of systematic probabilistic reasoning
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Bayesian explanations have swept through cognitive science over the past two
decades, from intuitive physics and causal learning, to perception, motor con-
trol and language. Yet people flounder with even the simplest probability
questions. What explains this apparent paradox? How can a supposedly Bayes-
ian brain reason so poorly with probabilities? In this paper, we propose a direct
and perhaps unexpected answer: that Bayesian brains need not represent or
calculate probabilities at all and are, indeed, poorly adapted to do so. Instead,
the brain is a Bayesian sampler. Only with infinite samples does a Bayesian
sampler conform to the laws of probability; with finite samples it systematically
generates classic probabilistic reasoning errors, including the unpacking effect,
base-rate neglect, and the conjunction fallacy.
errors on elementary probability pro-
blems, which are observed in experi-
ments with people.

Thus, it is possible to reconcile prob-
abilistic models of cognitive and brain
function with the human struggle to
master even the most elementary expli-
cit probabilistic reasoning.
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Bayesian Brains without Probabilities
In an uncertain world it is not easy to know what to do or what to believe. The Bayesian approach
gives a formal framework for finding the best action despite that uncertainty, by assigning each
possible state of the world a probability, and using the laws of probability to calculate the best
action. Bayesian cognitive science has successfully modelled behavior in complex domains,
whether in vision, motor control, language, categorization or common-sense reasoning, in terms
of highly complex probabilistic models [1–13]. Yet in many simple domains, people make
systematic probability reasoning errors, which have been argued to undercut the Bayesian
approach [14–17]. In this paper, we argue for the opposite view: that the brain implements
Bayesian inference and that systematic probability reasoning errors actually follow from a
Bayesian approach. We stress that a Bayesian cognitive model does not require that the brain
calculates or even represents probabilities. Instead, the key assumption is that the brain is a
Bayesian sampler (see Glossary). While the idea that cognition is implemented by Bayesian
samplers is not new [18–27], here we show that any Bayesian sampler is faced with two
challenges that automatically generate classic probabilistic reasoning errors, and only converge
on ‘well-behaved’ probabilities at an (unattainable) limit of an infinite number of samples. In short,
here we make the argument that Bayesian cognitive models that operate well in complex
domains actually predict probabilistic reasoning errors in simple domains (see Table 1, Key
Table).

To see why, we begin with the well-known theoretical argument against the naïve conception
that a Bayesian brain must represent all possible probabilities and make exact calculations using
these probabilities: that such calculations are too complex for any physical system, including
brains, to perform in even moderately complex domains [4,28–30]. A crude indication of this is
that the number of real numbers required to encode the joint probability distribution over n binary
variables grows exponentially with 2n, quickly exceeding the capacity of any imaginable physical
storage system. Yet Bayesian computational models often must represent vast data spaces,
such as the space of possible images or speech waves; and effectively infinite hypothesis
spaces, such as the space of possible scenes or sentences. Explicitly keeping track of
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Glossary
Ballistic accumulator model: a
model of evidence accumulation that
explains both accuracy and response
time. Unlike other similar models, it
assumes that evidence accumulation
is deterministic within each trial.
Base-rate neglect: a reasoning
fallacy in which individuals overweight
diagnostic information (e.g., the fever
I have could be caused by the Ebola
virus) and underweight relevant
background information (e.g., the
Ebola virus is very rare).
Bayesian sampler: an
approximation to a Bayesian model
that uses a sampling algorithm such
as MCMC to avoid intractable
integrals. While the model is used to
perform Bayesian inference, the
sampling algorithm itself is simply a
mechanism for producing samples.
Boltzmann machine: an artificial
neural network with binary nodes that
change state according to the
‘energy’ of a pattern of states, or
how well that pattern fits the
relationships determined by the
edges between nodes.
Deep belief network: a hierarchical
artificial neural network of binary
variables. Each layer of the network
can be composed on simpler
networks such as Boltzmann
machines.
Markov chain Monte Carlo
(MCMC): a family of algorithms for
drawing samples from probability
distributions. These algorithms
transition from state to state with
probabilities that depend only on the
current state. The transition
probabilities are carefully chosen so
that the states are (dependent)
samples of a target probability
distribution.
Metropolis–Hastings: An MCMC
algorithm that proposes new states
based on the current state, and
transitions to new states based on
the relative probability of the current
state and the proposed state.
Multistable stimuli: stimuli with
more than one perceptual
interpretation. One's perception of
the stimulus tends to switch back
and forth between interpretations
over time.
Normalization constant: while
probabilities of all of the hypotheses
must sum to 1, often it is much
easier to represent values that are
proportional to the probabilities
instead. The normalizing constant is

Key Table

Table 1. Properties of a Bayesian Sampler Compared to Ideal
Bayesian Reasoning

Property Ideal Bayesian reasoning Bayesian sampler

Strictly follows laws of probability Yes Only asymptotically, otherwise can show
systematic biases

Represents all hypotheses
simultaneously in the brain

Yes No, only represents one or a few at a time

Is easy to generate examples Yes, though requires a
sampling mechanism

Yes, just selects a sample

Can find all likely hypotheses,
even if surprising

Yes No, leading to unpacking effects and
conjunction fallacies

Can evaluate relative probabilities
of far-apart or incommensurable
hypotheses

Yes No, leading to forms of base-rate neglect
and other forms of the conjunction fallacy

Is more effective in ‘small’ worlds
compared to large context-rich
worlds

Yes, better with small,
well-defined worlds

No, better when context guides sampler to
relevant hypotheses, rather than aggregating
over broad hypothesis spaces

Produces stochastic and
autocorrelated behavior

No Yes
probabilities in such complex domains such as vision and language, where Bayesian models
have been most successful, is therefore clearly impossible.

Computational limits apply even in apparently simple cases. In a classic study, Tversky and
Kahneman [31] asked people about the relative frequency of randomly choosing words that fit the
pattern _ _ _ _ _ n _ from a novel. An explicit Bayesian calculation would require three steps: (i)
Posterior probabilities: calculating the posterior probability that each of the tens of thousands of
words in our vocabulary (and ideally over the 600 000 words in the Oxford English Dictionary) are
found in a novel; (ii) Conditionalization: filtering those which fit the pattern _ _ _ _ _ n _; (iii)
Marginalization: adding up the posterior probabilities of the words that passed the filter to arrive at
the overall probability that words randomly chosen from a novel would fit the pattern _ _ _ _ _ n _.

Explicitly performing these three steps is challenging, in terms of both memory and calculation; in
more complex domains, each step is computationally infeasible. And the brain clearly does not
do this: indeed, even the fact that a common word like ‘nothing’ fits the pattern is obvious only in
retrospect [30].

How, then, can a Bayesian model of reading, speech recognition, or vision possibly work if it
does not explicitly represent probabilities? A key insight is that, although explicitly representing
and working with a probability distribution is hard, drawing samples from that distribution is
relatively easy. Sampling does not require knowledge of the whole distribution. It can work
merely with a local sense of relative posterior probabilities. Intuitively, we have this local sense:
once we ‘see’ a solution (e.g., ‘nothing’), it is often easy to see that it is better than another
solution (‘nothing’ has higher posterior probability than ‘capping’) even if we cannot exactly say
what either posterior probability is. And now we have thought of two words ending in ‘-ing’, we
can rapidly generate more (sitting, singing, etc.). By continually sampling, we slowly build up a
picture of all of the possibilities. Using a number of samples much smaller than the number of
hypotheses makes the computations feasible.
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the sum of these proportional values
– it is the number by which each of
these proportional values must be
divided to become probabilities.
Particle filters: an algorithm
designed to sample from probability
distributions for data that arrives
sequentially.
Posterior probability: the probability
of a hypothesis in response to a
question.
Sampling: generating hypotheses
with frequency proportional to their
posterior probability. Probability
estimates can then be based on the
relative frequencies of these sampled
hypotheses.
Satisficing: searching until a good-
enough solution is found, rather than
searching until the best possible
solution is found.
Small worlds: restricted worlds with
few variables and well-defined
probabilities over those variables.
Wisdom of crowds: empirical result
that the aggregation of individual
estimates is better than the average
individual estimate, or sometimes any
individual estimate.
This sampling approach to probabilistic inference began in the 1940s and 1950s [32,33]; and is
ubiquitously and successfully applied in complex cognitive domains, whether cognitive science
or artificial intelligence [5,34]. If we sample forever, we can make any probabilistic estimate we
need to, without ever calculating explicit probabilities. But, as we shall see, restricted sampling
will instead lead to systematic probabilistic errors – including some classic probabilistic reason-
ing fallacies.

So how does this work in practice? Think of a posterior probability distribution as a hilly high-
dimensional landscape over possible hypotheses (see Figure 1A). Knowing the shape of this
landscape, and even its highest peaks, is impossibly difficult. But a sampling algorithm simply
explores the landscape, step by step. Perhaps the best known class of sampling algorithms is
Markov chain Monte Carlo (MCMC [35,36]). A common type of MCMC, the Metropolis–
Hastings algorithm [32,37], can be thought of as an android trying to climb the peaks of the
probability distribution, but in dense fog, and with no memory of where it has been. It climbs by
sticking one foot out in a random direction and ‘noisily’ judging whether it is moving uphill (i.e., it
noisily knows a ‘better’ hypothesis when it finds one). If so, it shifts to the new location;
otherwise, it stays put. The android repeats the process, slowly climbing through the probability
landscape, using only the relative instead of absolute probability to guide its actions.

Despite the simplicity of the android's method, a histogram of the android's locations will
resemble the hill (arbitrarily closely, in the limit), meaning the positions are samples from the
probability distribution (see last column of Figure 1A). These samples can then easily be used in a
variety of calculations. For example, to estimate the chance that a word in a novel will follow the
form _ _ _ _ _ n_, just sample some text, and use the proportion of the samples that follow that
pattern as the estimate. This is, indeed, very close to Tversky and Kahneman's availability
heuristic [38] – to work out how likely something is by generating possible examples; but now
construed as Bayesian sampling rather than a mere ‘rule of thumb.’

There is powerful prima facie evidence that the brain can readily draw samples from very
complex distributions. We can imagine visual or auditory events, and we can generate language
(and most tellingly to mimic the language, gestures, or movements of other people), which are
forms of sampling [39]. Similarly, when given a part of a sentence, or fragments of a picture,
people generate one (and sometimes many) possible completions [40,41]. This ‘generative’
aspect of perception and cognition (e.g., [42]) follows automatically from sampling models
[6,10].

Unavoidable Limitations of Sampling
Any distribution that can be sampled can, in the limit, be approximated – but finite samples will be
imperfect and hence potentially misleading. The android's progress around the probability
landscape is, first and most obviously, biased by its starting point. Suppose, specifically, that
the landscape contains an isolated peak. Starting far from the peak in an undulating landscape,
the android has little chance of finding the peak. Even complex sampling algorithms, that can be
likened to more advanced androids that sense the gradient under their feet or are adapted to
particular landscapes, will blindly search in the foothills, missing the mountain next door (see
Figure 1A and bottom row of Figure 1B). While we have illustrated this problem with a simple
sampling algorithm, it applies to any sampling algorithm without prior knowledge of the location
of the peaks [28,30]; indeed even the inventors of sampling algorithms are not immune to these
problems [36,43].

A Bayesian sampler that misses peaks of probability will produce reasoning fallacies. Various
fallacies, such as the unpacking effect and the conjunction fallacy, involve participants believing
that a more detailed description of an event is more likely than a less detailed description of that
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Figure 1. Sampling Algorithms Have Difficulties with Isolated Modes and Produce Autocorrelations. (A)
Illustration of the android metaphor, with the android climbing the landscape of the (log) posterior probability distribution.
The android uses the difference in height of its two feet to decide where to step, and its location is tracked over time (red x). A
histogram of its locations after many steps matches the mode of the probability distribution it explored. (B) Comparison of
sampling methods on 2D distributions. Each row is a different example probability distribution: a unimodal distribution with
uncorrelated x and y variables, a unimodal distribution with correlated x and y variables, a bimodal distribution with relatively
nearby modes, and a bimodal distribution where the modes are further apart. The first column shows a topographic map of
the posterior density with darker regions indicating higher probability. The second and third columns illustrate samples
drawn using the Metropolis–Hastings algorithm and JAGS program respectively. Within each column are trace plots that
show how the location of the sampler changes along each variable during each iteration of the sampling process.
Autocorrelations are present when a sample depends on the value of the previous sample in the trace plots (e.g.,
Metropolis–Hastings in the second row). Also shown are bivariate scatterplots that can be used to compare the samples
obtained against the true distributions in the first column. These show that not all of the modes are always sampled, even
when thousands of samples are drawn (i.e., in the bottom row). R code for these plots is included as supplemental material.
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same event, violating probability theory. In the unpacking effect, participants judge, say, ‘being a
lawyer’, to be less probable than the ‘unpacked’ description ‘being a tax, corporate, patent, or
other type of lawyer’ [44–46]. From a sampling point of view, bringing to mind types of lawyer that
are numerous but of low salience ensures these ‘peaks’ are not missed by the sampling
process, yielding a higher probability rating. Yet unpacking can also guide people away from
the high probability hypotheses: if the unpacked hypotheses are low probability instead of high,
for example trying to assess whether a person with a background in social activism becomes
either ‘a lawyer’ or ‘a tax, corporate, patent, or other type of lawyer’ then the probability of the
unpacked event is judged less than that of the packed event [46] – the sampler is guided away
from the peaks of probability (e.g., ‘human rights lawyer’).

The conjunction fallacy is a complex effect [47,48], but one source of the fallacy is the inability to
bring to mind relevant information. We struggle to estimate how likely a random word in a novel
will match the less detailed pattern _ _ _ _ _ n _: our sampling algorithm searches around a large
space and may miss peaks of high probability. However, when guided to where the peaks are
(i.e., starting the android from a different location), for example, by being asked about the pattern
_ _ _ _ ing in the more detailed description, then large peaks are found and probability estimates
are higher [31,45]. The process involved is visually illustrated in Figure 2A. The conjunction of the
correct locations of all the puzzle pieces cannot, of course, be more probable that the correct
location of a single piece. Yet when considered in isolation, the evidence that an isolated piece is
correct is weak (from a sampling standpoint, it is not clear whether, e.g., swapping pieces leads
to a higher or lower probability). But in the fully assembled puzzle (i.e., the ‘peak’ in probability
space is presented), local comparisons are easy – switching any of the pieces would make the fit
worse – so you can be nearly certain that all the pieces are in the correct position. So the whole
puzzle will be judged more probable than a single piece, exhibiting the conjunction fallacy.

A second bias in sampling is subtler. Sometimes regions of high probability are so far apart that a
sampler starting in one region is extremely unlikely to transition to the other. As shown in
Figure 2B, our android could be set down in Britain or in Colorado, and in each case would
gradually build up a picture of the local topography. But these local topographies would give no
clue that the baseline height of Colorado is much higher than Britain. The android is incredibly
unlikely to wander from one region to another so the relative heights of the two regions would
remain unknown.

This problem is not restricted to sampling algorithms or to modes that are far apart in a single
probability distribution. Indeed, the problem is even starker when a Bayesian sampler compares
probabilities in entirely different models – then it is often extremely difficult for the android to
shuttle between landscapes [49]. So, for example, although it is obvious that we are more likely
to obtain at least one, rather than at least five, double sixes from 24 dice throws, it is by no means
obvious whether this first event is more or less likely than obtaining heads in a coin flip. Indeed,
this problem sparked key developments in early probability theory by Pascal and Fermat [50].

One might think there is an easy solution to comparing across domains. Probabilities must sum
to 1, after all. So if sampling explores the entire landscape, then we can figure out the absolute
size of probabilities (i.e., whether we are dealing with Britain or Colorado) because the volume
under the landscape must be precisely 1. But exploring the entire landscape is impossible –

because the space is huge and may contain unknown isolated peaks of any possible size, as
we’ve seen (technically, the normalization constant often cannot be determined, even
approximately).

An example of this is given in Figure 2B, where within-domain comparisons are relatively easy.
So it may be easy to estimate which is more likely in a randomly chosen year: a total or partial
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Figure 2. Illustrations of the Conjunction Fallacy and Base-Rate Neglect. (A) Illustration of why the conjunction
fallacy arises from a Bayesian sampler. The top row gives a question about a piece of the puzzle. The bottom row illustrates
that evaluating the probability of a conjunction will be easier. (B) Four events to illustrate why local assessments of relative
probability are easier. Comparing the probability of seeing the two astronomical events in a year, or the probability of the two
quotations appearing on a random website, are both relatively easy. Comparing the probability of seeing one of the
astronomical events in a year to the probability of seeing one of the quotations on a random website is more difficult. In
particular, when comparing ‘Things fall apart; the centre cannot hold’ to the eclipse, the quote may seem more likely as it is a
common among quotes, yet this neglects the base rates: most websites do not have literary quotations, and there are many
chances for an eclipse each year.
eclipse; or which of two quotations are more likely to appear on a randomly chosen website.
However, between-domain comparisons, such as deciding whether a total eclipse is more likely
than ‘Things fall apart; the centre cannot hold’ appearing is more difficult: the astronomical event
and the quotation must be compared against different sets of experiences (e.g., years and
websites, respectively).

Being unable to effectively compare the probabilities of two hypotheses is a second way in which
a Bayesian sampler generates reasoning fallacies observed in people. The example in Figure 2B
also illustrates a version of base-rate neglect. ‘Things fall apart; the centre cannot hold’ is a
notable quotation, and eclipses are rare, so from local comparisons it may seem that ‘Things fall
apart; the centre cannot hold’ is more likely. However, the base rates, which are often neglected,
reverse this: the vast majority of websites have no literary quotations, and each year provides
many opportunities for an eclipse. Fully taking account of base-rates would require searching the
entire probability space – which is typically impossible. This inability to compare probabilities
from different domains plays a role in other reasoning fallacies: the conjunction fallacy also
888 Trends in Cognitive Sciences, December 2016, Vol. 20, No. 12



occurs when the two conjoined events are completely unrelated to one another [51]. While a
sampler can provide a rough sense of the probabilities of each hypothesis separately (is this
quotation or astronomical event common compared with similar quotes or astronomical events),
the inability to bridge between the two phenomena means that sampling cannot accurately
assess base rates or estimate the probabilities of conjunctions or disjunctions. In these cases,
participants are left to combine the non-normalized sampled probability estimates for each
hypothesis ‘manually’, and perhaps choose just one of the probabilities or perhaps combine
them inappropriately [52–54].

Interestingly, accuracy is improved in base-rate neglect studies when a causal link is provided
between the individual events [55,56], and experiencing outcomes together weakens conjunc-
tion fallacies [57] – we can interpret these studies as providing a link that allows a Bayesian
sampler to traverse between the two regions to combine probabilities meaningfully.

Sampling and Task Richness
Reasoning fallacies such as the unpacking effect, conjunction fallacy, and base-rate neglect
have greatly influenced our general understanding of human cognition. They arise in very simple
situations and violate the most elementary laws of probability. We agree that these fallacies make
a convincing argument against the view that the brain represents and calculates probabilities
directly.

This argument appears strengthened in complex real-world tasks. If our brains do not respect
the laws of probability for simple tasks, surely the Bayesian approach to the mind must fail in rich
domains such as vision, language and motor control with huge data and hypothesis spaces [29].
Indeed, even Savage, the great Bayesian pioneer, suggested restricting Bayesian methods to
‘small’ worlds [58,59].

Viewing brains as sampling from complex probability distributions upends this argument.
Rich, realistic tasks, in which there is a lot of contextual information available to guide
sampling, are just those where the Bayesian sampler is most effective. Rich tasks focus
the sampler on the areas of the probability landscape that matter – those that arise through
experience. By limiting the region in which the sampler must search, rich problems can often
be far easier for the sampler than apparently simpler, but more abstract, problems. Consider
how hard it would be to solve a jigsaw which is uniformly white; the greater the richness of
the picture on the jigsaw, the more the sampler can locally be guided by our knowledge of
real-world scenes.

Moreover, the problem of learning the structure of the world, or interpreting an image or a
sentence, involves finding ‘good-enough’ hypotheses to usefully guide our actions, which can
be achieved by local sampling in the probability landscape. Such hypotheses are no less
valuable if an isolated peak, corresponding to an even better hypothesis, remained undiscov-
ered. We suggest too that, for many real-world problems, multiple but distant peaks, corre-
sponding to very different hypotheses about the world, may be rare, particularly when context
and background knowledge are taken into account. Language is locally ambiguous [60], but it is
very unlikely that the acoustic signal of a whole sentence in English happens to have an equally
good interpretation in Latin; vision, too, is locally ambiguous (e.g., [61]) but the probability that a
portrait photograph could equally be reinterpreted as a rural scene is infinitesimal. In complex
real-world problems, then, climbing a rugged probability landscape to find ‘good-enough’
hypothesis is crucial; linking to numerical probabilities, even approximately, is not. Thus, the
view of cognition as satisficing [62] need not be viewed as opposed to the Bayesian approach
[14,29]. Rather, Bayesian sampling provides a mechanism for satisficing in real-world
environments.
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For these reasons, Bayesian models of cognition have primarily flourished as explanations of the
complex dependency of behavior on the environment in domains including intuitive physics,
causal learning, perception, motor control, and language [1–10]; and these computational
models generally do not involve explicit probability calculations, but apply Bayesian sampling,
using methods such as MCMC.

We have argued that rich real-world tasks may be more tractable to Bayesian sampling than
abstract lab tasks, because sampling is more constrained. But is it possible that the fundamental
difference is not task richness, but cognitive architecture, for example, between well-optimized
Bayesian perceptual processes and heuristic central processes [63,64]? We do not believe this
to be the case for two reasons. First, the differences between these kinds of tasks tendsdiffer-
ence between these kinds of tasks tends to disappear when performance is measured on the
same scale [65,66]. Second, there are counterexamples to the architectural distinction. Lan-
guage interpretation is a high-level cognitive task which shows a good correspondence to
Bayesian models [5,6]. And, conversely, purely perceptual versions of reasoning fallacies can be
constructed, as Figure 2A illustrates. More broadly, any perceptual task where a hint can
disambiguate the stimulus (e.g., sine-wave speech [67]) will generate examples of the conjunc-
tion fallacy.

If the brain is indeed a Bayesian sampler, then sampling should leave traces in behavior. One
immediate consequence is that behavior should be stochastic, because of the variability of
the samples drawn. Hence behavior will look noisy, even where on average the response will be
correct (e.g., generating the wisdom of crowds even from a single individual [68–70]). The
ubiquitous variability of human behavior, especially in highly abstract judgments or choice tasks
[71–74] is puzzling for pure ‘optimality’ explanations. Bayesian samplers can match behavioral
stochasticity in tasks such as perception, categorization, causal reasoning, and decision making
[20,21,23,24].

A second consequence of sampling is that behavior will be autocorrelated, meaning that each
new sample depends on the last, because the sampler makes only small steps in the probability
landscape (see Box 1). Autocorrelation appears ubiquitous within and between trials throughout
memory, decision making, perception, language, and motor control (e.g., [75,76]), and Bayesian
samplers produce human-like autocorrelations in perceptual and reasoning tasks [18,25]. One
Box 1. Sampling and Autocorrelation

When sampling from complex distributions, it is often impossible to draw samples directly, and sampling algorithms such
as MCMC are used instead. Because these algorithms look locally when producing the next sample, autocorrelation can
result. Figure 1B in main text compares samples drawn independently to samples drawn from two versions of MCMC: the
Metropolis–Hastings algorithm and Gibbs sampling as implemented in JAGS [36,93]. Samples produced by both MCMC
methods have low autocorrelations for independent unimodal distributions (top row of Figure 1B), but for highly
correlated variables and bimodal distributions autocorrelations are more prevalent, even when the aggregated samples
match the overall distribution (middle rows of Figure 1B). More recently developed sampling methods such as those
employed by the program Stan can also show sample autocorrelations, but more complex distributions are needed to
induce them [94]. And of course, when two modes are far apart, these samplers are very unlikely to sample both modes
(bottom row of Figure 1B).

Although they are outnumbered by models of behavior that assume independent sampling, several models of memory
and decision making do assume there are autocorrelations in sampling. Models of free recall such as Search of
Associative Memory [95] and SIMPLE [96] use the previously recalled word to cue the next word, and has been
productively used to account for the dependencies seen when people attempt to recall a list of words. In decision making,
the ballistic accumulator model could be considered an extreme version of autocorrelation in which each internal time
step produces the same strength of sampled evidence within a trial [97]. Explicit models of autocorrelated sampling have
been used to account for perceptual switching times of multistable stimuli [18] and anchoring effects in reasoning tasks
[25].

890 Trends in Cognitive Sciences, December 2016, Vol. 20, No. 12



Outstanding Questions
Is sampling sequential or parallel? If the
brain samples distributed patterns
across a network of neurons (in line
with connectionist models), then sam-
pling should be sequential. This implies
severe attentional limitations: for exam-
ple, that we can sample from, recog-
nize, or search for, one pattern at a
time.

How is sampling neurally implemented?
Connectionist models suggest that
sampling may be implemented naturally
across a distributed network, such as
the brain.

How are ‘autocorrelated’ samples inte-
grated by the brain? Accumulator
models in perception, categorization,
and memory seem best justified if sam-
pling is independent. How should such
models and their predictions be recast
in the light of autocorrelated samples?

Does autocorrelation of samples
reduce over trials as the brain becomes
tuned to particular tasks?

Are samples drawn from the correct
complex probability distribution or is
the distribution simplified first? Varia-
tional approximations can be used to
simplify complex probability distribu-
tions at the cost of a loss of accuracy.

How does sampling deal with counter-
factuals and the arrow of causality?
Does sampling across causal networks
allow us to ‘imagine’ what might have
happened if Hitler had been assassi-
nated in 1934? How can we sample
over entirely fictional worlds (e.g., to
consider possible endings to a story)?

How far can we simulate sampling in
‘other minds’ to infer what other people
are thinking?

How are past interpretations sup-
pressed to generate new interpreta-
tions for ambiguous stimuli?

How far does sampling explain sto-
chastic behavior in humans and non-
human animals?
particular consequence of autocorrelation will be that ‘priming’ a particular starting point in the
sampling process will bias the sampler. Thus, asking, for example, the gestation time of an
elephant will bias a person's estimate because they begin with the common reference point of 9
months: the starting point is an ‘anchor’ and sampling ‘adjusts’ from that anchor – but
insufficiently when small samples are drawn. This provides a Bayesian reinterpretation of
‘anchoring and adjustment’ [25], a process widely observed in human judgment [15,77].

The extent of autocorrelation depends on both the algorithm and the probability distribution (see
Figure 1B). Sampling algorithms often have tuning parameters which are chosen to minimize
autocorrelation and to better explore multiple peaks. Of course the best settings of these tuning
parameters are not known in advance, but they can be learned by drawing ‘warm-up’ samples
to get a sense of what the distribution is like. Interestingly, there is behavioral evidence for this.
Participants given ‘clumpier’ reward distributions in a 2D computer foraging task later behaved
as if ‘tuned’ to clumpier distributions in semantic space in a word-generations task. This
suggests that there is a general sampling process that people adapt to the properties of the
probability distributions that they face [78–80].

Concluding Remarks and Future Perspectives
Sampling provides a natural and scalable implementation of Bayesian models. Moreover, the
questions that are difficult to answer with sampling correspond to those with which people
struggle, and those easier to answer with sampling are contextually rich, and highly complex,
real-world questions on which people show surprising competence. Sampling generates
reasoning fallacies, and leaves traces, such as stochasticity and autocorrelations, which are
observed in human behavior.

The sampling viewpoint also fits with current thinking in computational neuroscience, where an
influential proposal is that transitions between brain states correspond to sampling from a
probability distribution [26,27,81,82] or multiple samples are represented simultaneously (e.g.,
using particle filters [83–86]).

Moreover, neural networks dating back to the Boltzmann machine [87] take a sampling
approach to probabilistic inference. For example, consider deep belief networks, which
have been highly successful in vision, acoustic analysis, language, and other areas of machine
learning [88]. These networks consist of layers of binary variables connected by weights. Once
the network is trained, it defines a probability distribution over the output features. However,
the probabilities of configurations of output features are not known. Instead, samples from the
total probability distribution are generated by randomly initializing the output variables; and
conditional samples are generated by fixing some of the output variables to particular values
and sampling the remaining variables. Applications of deep belief networks include generating
facial expressions and recognizing objects [34,89]. As with human performance, these net-
works readily sample highly complex probability distributions, but can only calculate explicit
probabilities with difficulty. Of course, it is possible that the brain represents probability
distributions over small collections of variables [90,91], or variational approximations to prob-
ability distributions [92], but this would not affect our key argument, which stems from the
unavoidable difficulty of finding isolated peaks in, and calculating the volume of, complex
probability distributions.

While Bayesian sampling has great promise in answering the big questions of how Bayesian
cognition could work, there are many open issues. As detailed in Outstanding Questions,
interesting avenues for future work are computational models of reasoning fallacies, explan-
ations of how complex causal structures are represented, and further exploration of the nature of
the sampling algorithms that may be implemented in the mind and the brain.
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