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Overview

Human cognition is not thought to be a monolithic entity, but
instead is often considered to include a range of strategies
and representations that can be applied selectively in different
domains. For instance, we are thought to have both intuitive
and deliberative processes for decision making (Kahneman,
2011) and both approximate and precise representations of
numeracy (Feigenson, Dehaene, & Spelke, 2004). But how
do these different strategies and representations develop, and
how do we select which ones to use?

In this symposium, we will discuss this question in the do-
main of physical inference. We use this domain because it has
been well studied across many branches of cognitive science
— including development, perception, neuroscience, and arti-
ficial intelligence — and researchers from across these fields
have proposed a wide range of strategies and representations
that support this ability. Some suggest that our physical infer-
ences are based on simulating possible outcomes using men-
tal models of the world (Battaglia, Hamrick, & Tenenbaum,
2013; Shepard & Metzler, 1971; Smith & Vul, 2013). Others
suggest that we apply logical reasoning to discover what is
entailed from the relationships between objects (Davis, Mar-
cus, & Chen, 2013; Forbus, 1983). And yet others suggest
that we can extract physical information from a scene us-
ing bottom-up perceptual processes (Biederman, Mezzanotte,
& Rabinowitz, 1982; Firestone & Keil, 2016; Firestone &
Scholl, 2017).

This symposium brings together experts in physical infer-
ence with backgrounds in developmental psychology, psy-
chophysics, and machine learning for the goal of understand-
ing the different strategies and representations the mind uses
for physical scene understanding. These speakers will discuss
questions such as how different representations develop in in-
fancy (Anderson), how we can distinguish between cognitive
mechanisms for physical inference (Firestone), how we com-
bine different strategies in our physical judgments (Smith),
and how we allocate cognitive resources to those strategies
(Hamrick). In a concluding panel, the speakers will discuss
how to build a theory of physical inference that combines
these different strategies and representations.
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Infants’ reasoning in dual physical domains:
Physical inference without the instruction
manual

Erin Anderson, Susan Hespos, & Lance Rips

To understand the basis of our physical inferences, we can
study infants’ reactions to possible and to utterly impossi-
ble events. These reactions lay the foundation for how hu-
mans represent everyday entities and substances. Decades of
research on infant cognition have shown a puzzling imbal-
ance: infants expect principled behavior from solid objects
but seem to have no expectations (or highly undependable
ones) for non-solid substances like sand (Chiang & Wynn,
2000; Huntley-Fenner, Carey, & Solimando, 2002).

In this talk, we will discuss work that confirms that in-
fants do represent both solid objects and nonsolid substances
like liquids or sand. First, we present experiments that show
that 5-month-old infants expect objects and substances to be-
have in different ways (Hespos, Ferry, & Rips, 2009; Hes-
pos, Ferry, Anderson, Hollenbeck, & Rips, 2016). We further
demonstrate that infants have expectations specific to sub-
stances when the outcomes are not contrasted with object be-
havior (Anderson, Hespos, & Rips, 2018). Together, these
studies provide evidence that the guiding principles for sub-
stances and solids develop in parallel over the first year, and
they raise questions about when and how infants co-ordinate
reasoning across these domains.

Doing physics by eye and by hand

Chaz Firestone
When we appreciate that a stack of dishes will collapse or
a tower of blocks will topple, we interpret observable events
in terms of unobservable physical forces. How? Classic and
contemporary work on this question typically treats such in-
ferences as species of higher-level cognition, akin to solving
physics riddles by reasoning and calculation. Here I explore
a very different possibility: that such inferences are rooted
in automatic visual processing. I discuss evidence that, just
like visual processing of color or motion, physical inferences
are (a) spontaneous, (b) fast, (c) attention-grabbing, and (d)
phenomenologically distinctive (Firestone & Scholl, 2016,
2017). I extend this work to show that such inferences are



also (e) reflexive, and surprisingly intransigent to explicit be-
liefs or instructions. Recent work suggests that physical in-
ferences flexibly incorporate new information about a scene,
such as an instruction to treat gray blocks in a tower as 10x
heavier than green blocks (Battaglia et al., 2013). However,
I show that when observers evaluate such scenes by mak-
ing continuous mouse movements (Freeman, Dale, & Farmer,
2011), their response trajectories reveal otherwise: even ob-
servers who successfully update their considered judgments
about a scene are nevertheless ‘pulled’ toward initial judg-
ments that resist this new information. I suggest that physi-
cal understanding may not be a single process, but rather one
with dissociable stages: a fast, reflexive, “perceptual” stage,
and a slower, flexible “cognitive” stage.

Integrating logical rules and simulation

Kevin A Smith & Joshua B Tenenbaum

If we have multiple strategies for performing physical infer-
ence tasks, then how do we know which strategy to apply to
which task? Do we simply pick a single cognitive strategy,
or do we flexibly blend different strategies to solve our prob-
lems? T will discuss this choice of strategies in the case of
judging whether and how a balance beam will tip — a task that
has often been considered to be solved by rule-based decision
trees (Siegler, 1976), but shares many features with a task
that has been used to demonstrate simulation-based inference
(Battaglia et al., 2013). By asking for judgments about how
beams stacked with objects of a variety of shapes and materi-
als behave, I demonstrate that people’s judgments cannot be
explained by traditional rule-based accounts, but neither can
they be explained by simulation alone. Instead, people use a
combination of rules and simulation to make inferences about
balance beam stability. I further show the mixture of strate-
gies applied to this problem is consistent with a framework
in which people rationally trade off between the costs and ex-
pected benefits of each strategy to choose how to approach
this problem of physical inference.

Meta-reasoning for adaptive physical strategy
selection and control

Jessica B Hamrick
One of the most powerful and flexible aspects of cognition
is that of mental simulation, which is the mind’s ability to
imagine seeing, interacting with, and manipulating objects
and scenes, almost as if they were real. While research has
shown how the mind is able to use mental simulation to rea-
son about a wide range of physical domains (Battaglia et al.,
2013), other research suggests that mental simulation is not
always the most efficient strategy and that people do indeed
learn alternate strategies and switch between them (Schwartz
& Black, 1996). How do people know what strategy will be
appropriate for which situation, without actually executing
the strategy? And, how do people learn different strategies
in the first place? Research on how people choose between
strategies more broadly has suggested meta-reasoning as a
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framework for strategy selection, which involves choosing
the strategy which is expected to best satisfy a speed/accuracy
tradeoff (Lieder et al., 2014). Here, I will argue that meta-
reasoning can be applied to physical reasoning strategies as
well, and will describe a system that learns through experi-
ence which strategies to use and how much computation to
allocate to each strategy (Hamrick et al., 2017). T will also
suggest that people may learn new strategies both through
experience as well as through mental simulation (Callaway,
Hamrick, & Griffiths, 2017).
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