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The recent emergence of machine-manipulated media raises an
important societal question: How can we know whether a video
that we watch is real or fake? In two online studies with 15,016
participants, we present authentic videos and deepfakes and ask
participants to identify which is which. We compare the perfor-
mance of ordinary human observers with the leading computer
vision deepfake detection model and find them similarly accurate,
while making different kinds of mistakes. Together, participants
with access to the model’s prediction are more accurate than either
alone, but inaccurate model predictions often decrease partici-
pants’ accuracy. To probe the relative strengths and weaknesses
of humans and machines as detectors of deepfakes, we examine
human and machine performance across video-level features, and
we evaluate the impact of preregistered randomized interven-
tions on deepfake detection. We find that manipulations designed
to disrupt visual processing of faces hinder human participants’
performance while mostly not affecting the model’s performance,
suggesting a role for specialized cognitive capacities in explaining
human deepfake detection performance.

misinformation | artificial intelligence | forensic science | wisdom of
crowds | facial recognition

How do we tell the difference between the genuine and the
artificial? The emergence of deepfakes—videos that have

been manipulated by neural network models to either swap
one individual’s face for another or alter the individual’s face
to make them appear to say something they have not said—
presents challenges both for individuals and for society at large.
Whereas a video of an individual performing an action or making
a statement has long been one of the strongest pieces of evidence
that the relevant event actually occurred, deepfakes undermine
this gold standard, with potentially alarming consequences (1–4).

How should we best meet this new challenge of evaluating
the authenticity of a video? One approach is to build automated
deepfake detection systems that analyze videos and attempt to
classify their authenticity. Recent advances in training neural
networks for computer vision reveal that algorithms are capable
of surpassing the performance of human experts in some com-
plex strategy games (5, 6) and medical diagnoses (7, 8), so we
might expect algorithms to be similarly capable of outperform-
ing people at deepfake detection. Indeed, such computational
methods often surpass human performance in detecting physical
implausibility cues (9), such as geometric inconsistencies of shad-
ows, reflections, and distortions of perspective (10–12). Similarly,
face recognition algorithms often outperform forensic examiners
(who are significantly better than ordinary people) at identifying
whether pairs of face images show the same or different people
(13). This focus on automating the analysis of visual content
has advantages over certain methods from traditional digital
media forensics, which often rely on image metadata (14) that
are not available for many of today’s most concerning deepfakes,
which typically appear first on social media platforms stripped of
such metadata (15, 16). Moreover, metadata from an individual’s
decision to share on social media may not be a reliable predictor
of media’s veracity because social media tends to focus people’s
attention on factors other than truth and accuracy (17, 18).

The artificial intelligence (AI) approach to classifying videos
as real or fake focuses on developing large datasets and train-
ing computer vision algorithms on these datasets (19–31). The
largest open-source dataset is the Deepfake Detection Challenge
(DFDC) dataset, which consists of 23,654 original videos showing
960 consenting individuals and 104,500 corresponding deepfakes
produced from the original videos. The first frames of both a
deepfake and original video from this dataset appear in Fig. 1.
The deepfakes examined here contain only visual manipulations
produced using seven synthetic techniques: two deepfake autoen-
coders, a neural network face swap model (32), the neural talking
heads (NTH) model (33), the face swapping generative adver-
sarial network (FSGAN) for reenactment and inpainting (34),
StyleGAN for generating synthetic faces (35), and sharpening
refinement on blended faces (31). Unlike viral deepfake videos of
politicians and other famous people, the videos from the compe-
tition have minimal context: They are all 10-s videos depicting un-
known actors making uncontroversial statements in nondescript
locations. As such, the cues for discerning real from fake can be
based only on visual cues and not auditory cues or background
knowledge of an individual or the topic they are discussing. In a
contest run from 2019 to 2020, The Partnership for AI, in collab-
oration with large companies including Facebook, Microsoft, and
Amazon, offered $1,000,000 in prize money to the most accurate
deepfake detection models on the DFDC holdout set via Kaggle,
a machine learning competition website. A total of 2,116 teams
submitted computer vision models to the competition, and the
leading model achieved an accuracy score of 65% on the 4,000
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Fig. 1. One of these two images is the first frame of a deepfake from experiment 1; the other is the first frame of the original, authentic video from which
the deepfake was created. Experiment 1 asked whether participants can tell which is which, using a two-alternative forced-choice paradigm (i.e., selecting
which of two video clips is a deepfake). Experiment 2 presented a single video and asked participants for their confidence the video is a deepfake or not.
(Left) The deepfake; the man was not mustachioed at the time of filming. (Right) Authentic.

videos in the holdout data, which consisted of half deepfake and
half real videos (31, 36). While there are many proposed tech-
niques for algorithmically detecting fakes (including affective
computing approaches like examining heart rate and breathing
rate (37) and looking for emotion-congruent speech and facial
expressions) (38, 39), the most accurate computer vision model
in the contest (40) focused on locating faces in a sample of static
frames using multitask cascaded convolutional neural networks
(41), conducting feature encoding based on EfficientNet B-7
(42), and training the model with a variety of transformations
inspired by albumentations (43) and grid mask (44). Based on this
model outperforming 2,115 other models to win significant prize
money in a widely publicized competition on the largest dataset
of deepfakes ever produced, we refer to this winning model as
the “leading model” for detecting deepfakes to date.

The rules of the competition strictly forbid human-in-the-loop
approaches, which leaves open questions surrounding how well
human–AI collaborative systems would perform at discerning
between manipulated and authentic videos. In this paper, we
address the following questions: How accurately do individuals
detect deepfakes? Is there a “wisdom of the crowds” (45, 46) ef-
fect when averaging participants’ responses for each video? How
does individual performance compare with the wisdom of the
crowds, and how do these performances compare to the leading
model’s performance? Does access to the model’s predictions
and certainty levels help or hinder participants’ discernment?
And, what explains variation in human and machine perfor-
mance; specifically, what is the role of video-level characteristics,
can emotional priming influence participants’ performance at
detecting deepfakes, and does specialized processing of faces
play a role in human and machine deepfake detection?

Crowdsourcing and averaging individuals’ responses are
promising and practical solutions for handling the scale of
misinformation that would be otherwise overwhelming for an
individual expert. Recent empirical research finds that averaged
responses of ordinary people are on par with third-party fact-
checkers for both factual claims in articles (47) and overall
accuracy of content from URL domain names (48, 49). In
order to comprehensively compare humans to the leading AI
model and evaluate collective intelligence against its artificial
counterpart, we need to conduct two comparisons: How often
do individuals outperform the model, and how often does crowd
wisdom outperform the model’s prediction?

While a machine will consistently predict the same result
for the same input, human judgment depends on a range of
factors, including emotion. Recent research in social psychol-
ogy suggests that negative emotions can reduce gullibility (50,
51), which could perhaps improve individual’s discernment of

videos. In particular, anger has been shown to reduce depth of
thought by promoting reliance on stereotypes and previously held
beliefs (52). Moreover, priming people with emotion has been
demonstrated to both increase and decrease people’s gullibility,
depending on the category of emotion (53), and hinder people’s
ability to discern real from fake news (54). The role of emotion in
deepfake detection is of practical concern because people share
misinformation, especially political misinformation, because of
its novelty and emotional content (55). While a detailed exami-
nation of emotions as potential mechanisms to explain deepfake
detection performance is outside the scope of this paper, we
have included a preregistered randomized experiment to eval-
uate whether experimentally elicited anger impairs participants’
performance in detecting deepfakes.

Based on research demonstrating humans’ expert visual pro-
cessing of faces, we may expect humans to perform quite well at
identifying the synthetic face manipulations in deepfake videos.
Research in visual neuroscience and perceptual psychology has
shown that the human visual system is equipped with mechanisms
dedicated for face perception (56). For example, there is a region
of the brain specialized for processing faces (57). Human infants
show sensitivity to faces even before being exposed to them (58,
59), and adults are less accurate at recognizing faces when images
are inverted or contain misaligned parts (60–62). The human
visual system is faster and more efficient at locating human faces
than other objects, including objects with illusory faces (63).
Whether human visual recognition of faces is an innate ability
or a learned expertise through experience, visual processing of
faces appears to proceed holistically for the vast majority of
people (64, 65). In order to examine specialized processing of
faces as a potential mechanism explaining deepfake detection
performance, we include a randomized experiment where we
obstruct specialized face processing by inverting, misaligning,
and occluding videos.

In order to answer questions about human and machine per-
formance at deepfake detection, we designed and developed
a website called Detect Fakes where anyone on the internet
could view deepfake videos sampled from the DFDC and see
for themselves how difficult (or easy) it is to discern deepfakes
from real videos. On this website, we conducted two random-
ized experiments to evaluate participants’ ability to discern real
videos from deepfakes and examine cognitive mechanisms ex-
plaining human and machine performance at detecting fake
videos. We present a screenshot of the user interface of these
two experiments in SI Appendix, Fig. S4. In the first experiment,
we presented a two-alternative forced choice design where a
deepfake video is presented alongside its corresponding real
video. In the second experiment, we presented participants with
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a single video design and asked them to share how confident
(from 50 to 100% in one percentage point increments) they
are that the video is a deepfake (or is not a deepfake). In this
single video framework, we present participants with the option
to update their confidence after seeing the model’s predicted
likelihood that a video is a deepfake. By doing so, we evaluate
how machine predictions affect human decision-making. In both
experiments, we embedded randomized interventions to evaluate
whether incidental emotion (emotion unrelated to the task at
hand) or obstruction of specialized processing of faces influence
participants’ performance.

Results
Experiment 1: Two-Alternative Forced Choice (n = 5,524). In exper-
iment 1, 5,524 individuals found our website organically and
participated in 26,820 trials. The 56 pairs of videos in experi-
ment 1 were sampled from the DFDC training dataset because
the experiment was conducted before the holdout videos for
the DFDC dataset were publicly released. As such, we compare
participants’ performance in experiment 1 to the overall per-
formance of the leading model. We leave a direct comparison
of participant and model performance for experiment 2, which
focuses on performance across holdout videos.
Individual vs. machine. As stated in our pre-analysis plan for Ex-
periment 1, we examined the accuracy of all participants who saw
at least 10 pairs of videos, for a total of 882 participants.* Eighty-
two percent of participants outperform the leading model, which
achieves 65% accuracy on the holdout dataset (36). Half of the
stimuli set (28 of 56 pairs of videos) was identified correctly by
over 83% of participants, 16 pairs of videos were identified cor-
rectly by between 65% and 83% of participants, and 12 pairs of
videos were identified correctly by less than 65% of participants.
Out of these 12 pairs of videos, 3 pairs of videos were identified
correctly by less than 50% of participants. Fig. 2A presents the
distribution of participants’ performance in experiment 1 (in blue
in the second column) next to the model’s overall performance
(in black in the first column).

We do not find any evidence that participants improve in
their ability to detect these videos within the first 10 videos seen
(P = 0.112) (all P values reported in this paper are generated by
linear regression with robust SEs clustered on participants unless
otherwise stated). On average, participants took 42 s to respond
to each pair of videos, and we find that, for every additional 10
s participants take to respond, participants’ accuracy decreased
by 1.1 percentage points (P < 0.001). We embedded three ran-
domized experiments in experiment 1 to evaluate the roles of
specialized processing of faces, time for reflection, and emotion
elicitation. We find participants are 5.6 percentage points less
accurate (P = 0.004) at detecting pairs of inverted videos than
pairs of upright videos. In contrast, we do not find statistically
significant effects of the additional time for reflection inter-
vention or this particular emotion elicitation intervention. The
custom emotion elicitation intervention in this first experiment
did not have a statistically significant influence on participants’
self-reported emotions, which suggests the custom emotion elic-
itation experiment did not work here. We provide additional
details on the interventions in experiment 1 in SI Appendix.

Experiment 2: Single-Video Design (n = 9,492). In experiment 2,
9,492 individuals participated: 304 individuals were recruited
from Prolific and completed 6,390 trials; 9,188 individuals found
our website organically and completed 67,647 trials.† In the

*Pre-analysis plan for nonrecruited participants in experiment 1 is available at
https://aspredicted.org/g6497.pdf.

†Pre-analysis plan for recruited individuals participating in experiment 2 is available at
https://aspredicted.org/hj6wb.pdf.

recruited cohort, all but three participants viewed 20 videos. In
the nonrecruited cohort, over half of participants viewed seven
videos, and the 90th percentile participant viewed 17 videos. The
website instructed participants, about videos, that “half are deep-
fakes, half are not.” After viewing each video, participants move
a slider to report their response ranging from “100% confidence
this is NOT a DeepFake” to “100% confidence this is a Deep-
Fake” in 1% increments with “just as likely a DeepFake as not” in
the middle (see SI Appendix, Fig. S4 for a screenshot of the user
interface). Participants can never make a selection with less than
50% confidence; the slider’s default position is in the center (at
the “just as likely a DeepFake as not” position); one increment
to the right becomes “51% confidence this is a DeepFake,” and
one increment to the left becomes “51% confidence this is NOT
a DeepFake.” The stimuli in experiment 2 consist of 50 videos
randomly sampled from the competition holdout dataset (half
deepfake and half nonmanipulated), 4 videos of Kim Jung-un and
Vladimir Putin, including one deepfake and one nonmanipulated
video of each leader, and a deepfake attention check video.

In experiment 2, we define the accuracy score as the partic-
ipant’s response between zero and one normalized for correct-
ness, which is the participant’s response if correct, or one minus
the participant’s response if incorrect. For example, if a partic-
ipant responded “82% confidence this is a DeepFake” and the
participant is correct, then the participant is assigned an accuracy
score of 0.82. If the participant is incorrect, then the participant
would be assigned an accuracy score of 0.18. We define accurate
identification as an accuracy score greater than 0.5.

Participants’ and the leading model’s performance on deep-
fake detection depends on the population of participants, the
population of videos, how performance is measured at the in-
dividual or collective level, and whether videos are presented
side by side or by themselves. In some cases, we find a ma-
chine advantage, and, in others, we find a human advantage.
The rest of Results examines individual participant performance
compared with the leading model, participants’ collective perfor-
mance compared with the leading model, participants’ collective
performance when participants have access to the model’s pre-
dictions, variations in human and machine performance across
videos, and randomized experiments designed to evaluate the
role of emotional priming and specialized visual processing of
faces.
Individual vs. machine. For participants who pass the attention
check, recruited participants accurately identified deepfakes
from the randomly sampled holdout videos in 66% of attempts,
while the nonrecruited participants accurately identified videos
in 69% of trials (or 72% of attempts when limiting the analysis
to nonrecruited participants who saw at least 10 videos). In
comparison, the leading model accurately identified deepfakes
on 80% of the sampled videos, which is significantly better than
the 65% accuracy rate this model achieves on the full holdout
dataset of 4,000 videos (36).

In a direct comparison of performance, 13% of recruited par-
ticipants, 27% of nonrecruited participants who saw at least 10
videos, and 37% of nonrecruited participants who saw fewer than
10 videos outperform the model. Fig. 2A presents the distribution
of participants’ accuracy on the sampled holdout videos (in teal
for recruited participants and gold for nonrecruited participants).
Relative to the leading model, participants are less accurate at
identifying deepfakes than they are at identifying real videos. Re-
cruited participants accurately identify deepfakes as deepfakes
in 57% of attempts compared to the leading model identifying
deepfakes as deepfakes in 84% of videos, while both recruited
participants and the leading model identify real videos as real
videos at nearly same rate (75% of participants’ observations and
76% of videos). Recruited participants predicted the sampled
holdout videos were real (57% of observation) considerably more
often than fake (38% of observations), while the computer vision
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Fig. 2. (A) The distribution of participant performance across experiments compared to the model’s performance via violin plots where the white dots
indicate the mean and the black bars indicate the interquartile range. R, recruited participants; NR, nonrecruited participants; E1, experiment 1; E2,
experiment 2. In experiment 1 (two-alternative forced choice), accuracy is defined as identifying a deepfake from a pair of videos correctly. In experiment 2
(single-video design), accurate identification is defined as responding with the correct answer with more than 50% confidence. The model’s performance
represents a single observation in each instance, and, as such, we present the model’s performance as a horizontal black line with a white dot in the middle.
The crowd mean distributions are obtained by bootstrapping CIs based on 1,000 randomly drawn samples that are each half of the total observations. (B)
A scatter plot of the model’s accuracy and the distribution of participants’ accuracy scores for each video. The x axis is an index of the videos, and it is
ordered by experiment, true class of each video, and participant’s average accuracy. The teal lines represent the interquartile range of recruited participants’
responses. (C) The distribution of changes in recruited participants’ accuracy after updating their response based on whether the model’s prediction is
correct, incorrect, or indecisive. (D) The receiver operator characteristic curves of computer performance, recruited participants’ collective performance, and
recruited participants’ collective performance with the model’s decision support across the 50 DFDC videos in experiment 2.
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model predicted videos were real (44% of observations) barely
more frequently than fake (42% of observations). In 5% of
recruited participant observations and 14% of computer vision
model observations, the prediction was a 50–50 split between
real and fake. We report confusion matrices for each treatment
condition in SI Appendix, Tables S3–S7.

On the additional set of videos of political leaders, participants
outperform the leading model. Specifically, 60% of recruited
participants and 68% of nonrecruited participants who saw at
least 10 videos outperform the model on these videos. For the
deepfake videos of Kim Jong-un, Vladimir Putin, and the atten-
tion check, the state-of-the-art computer vision model outputs a
2%, 8%, and 1% probability score that each respective video is a
deepfake, which is both confident and inaccurate.

We do not find any evidence that participants’ overall accuracy
changes as participants view more videos (P = 0.433). However,
we find that, for every additional video seen by recruited partici-
pants, they are 0.9% (P < 0.001) more likely to report any video
as a deepfake. This corresponds to performing about 18% better
at detecting deepfakes and 18% worse at identifying real videos
by the last video.

Recruited participants spent a median duration of 22 s be-
fore submitting their initial guess and a median duration of 3
s adjusting (or not adjusting) their initial guess when prompted
with the model’s predicted likelihood. Nonrecruited participants
spend a similar amount of time. For both sets of participants, we
find that, for every 10 additional seconds of participant response
time, participants’ accuracy decreases by one percentage point
(P < 0.001).
Crowd wisdom vs. machine. The crowd mean, participants’ re-
sponses averaged per video, is on par with the leading model
performance on the sampled holdout videos. For recruited par-
ticipants, the crowd mean accurately identifies 74% of videos. For
nonrecruited participants, the crowd mean accurately identifies
80% of videos. For the 1,879 nonrecruited participants who saw
at least 10 videos, the crowd mean is 86% accurate. In compari-
son, the leading model accurately identifies 80% of videos.

In Fig. 2B, we compare statistics on participants’ accuracy
(the mean and interquartile range) with the model’s predictions
for each video. In SI Appendix, Table S2, we present the mean
accuracy of recruited and nonrecruited participants and the com-
puter vision model for all videos. There are two videos (both
deepfakes) on which both the crowd mean and the leading model
are at or below the 50% threshold. One of these videos (video
7837) is extremely blurry, while the other video (video 4555) is
filmed from a low angle, and the actress’s glasses show significant
glare.

There are 8 videos on which the crowd mean is accurate but the
model is at or below the 50% threshold and another 5 to 13 videos
on which the model is accurate but the crowd mean (depending
on how the population selected) is below the 50% threshold.
Human–AI collaboration. In addition to comparing individual
and collective performance to the leading model’s performance,
we examined how an AI model could complement human per-
formance. After participants submitted their initial response for
how confident they are that a video is or is not a deepfake in
experiment 2, we revealed the likelihood that the video is a
deepfake—as predicted by the leading model—and gave par-
ticipants a chance to update their response. After taking into
account the model’s prediction, participants updated their confi-
dence in 24% of trials (crossing the 50% threshold for accurate
identification in 12% of trials). By updating their responses,
recruited participants’ accurate identification increased from 66
to 73% of observations (P < 0.001 based on a Student’s t test).
Fig. 2C presents the distribution of changes in overall participant
accuracy for the 50 videos sampled from the DFDC. For the 40
videos upon which the model accurately identifies the video as
a deepfake or not, participants updated their responses to be,

on average, 10.4% more accurate at identification than before
seeing the model’s prediction. For the remaining 10 videos on
which the model made an incorrect or equivocal prediction,
participants updated their responses to be, on average, 2.7%
less accurate at identification than before seeing the model’s
predictions. In the most extreme example of incorrect updating,
the model predicted a 28% likelihood the video was a deepfake
when it was indeed a deepfake, and participants updated their
responses to be, on average, 18% less accurate at identifying the
deepfake. This particular video (video 7837) is quite blurry, and,
perhaps, participants changed their responses because it’s very
difficult to discern manipulations in low-quality video.

For the additional deepfake videos of Kim Jung-un and
Vladimir Putin that are not included in the overall analysis, the
model predicted a 2% and 8% likelihood, respectively, that the
video was a deepfake. This prediction is not only incorrect but
confidently so, which led participants to update their responses
such that participants’ accurate identification dropped from 56
to 34% on the Kim Jung-un deepfake and 70 to 55% on the
Vladimir Putin deepfake.

In Fig. 2D, the receiver operating characteristic (ROC) curve
of the leading model is plotted alongside the ROC curves of the
crowd mean and the crowd mean responses where participants
have access to the model’s prediction for each video. While the
model has a slightly higher area under the receiver operating
characteristic curve (AUC) score of 0.957 relative to the crowd
mean’s AUC score of 0.936, either the model or the crowd mean
could be considered to perform better, depending on the ac-
ceptable false positive rate. However, the crowd mean response
after seeing the model’s predictions strictly outperforms both the
crowd mean and the leading model. When we condition the ROC
analysis on confidence following methods for estimating the relia-
bility of eyewitness identifications (66), we find that medium- and
high-confidence responses outperform low-confidence responses
by a large degree. We define low confidence as responses between
33.5 and 66.5, medium confidence as responses between 17 and
33.5 or 66.5 and 83, and high confidence as responses between 0
and 17 or 83 and 100. SI Appendix, Fig. S2 ROC curves present
a visual comparison of model performance to low-, medium-,
and high-confidence responses from participants, which reveals
medium- and high- (but not low-) confidence responses can out-
perform the model’s predictions, depending on the acceptable
false positive rate.
Video features correlated with accuracy. Given the heterogeneity
in both participants’ and the leading model’s performance on
videos, we extend the analysis of performance across seven video-
level features: graininess, blurriness, darkness, presence of a
flickering face, presence of two people, presence of a floating
distraction, and the presence of an individual with dark skin.
These video-level characteristics were hand-labeled by the re-
search team. On the 14 videos that are either grainy, blurry, or
dark, the crowd wisdom of recruited participants is correct on
8 videos, while the crowd wisdom of nonrecruited participants
and the model is correct on 10 videos. When we examine the
36 videos that are neither grainy, blurry, nor extremely dark,
the crowd wisdom of recruited participants is correct on 29 out
of 36 videos, the crowd wisdom of nonrecruited participants is
correct on 32 out of 36 videos, and the model is correct on
30 of 36 videos. The presence of a flickering face is associated
with an increase in recruited participants’ accuracy rates by 24.2
percentage points (P < 0.001) and an increase in the model’s
accuracy rates by 21.7 percentage points (P = 0.170) in detecting
a deepfake. The presence of two people in a video instead of a
single person is associated with an overall increase in recruited
participants’ accuracy rates by 7.6% (P < 0.001) and a 21.9%
decrease (P = 0.023) by the model in identifying real videos. The
presence of a floating distraction is associated with a decrease
in recruited participants’ accuracy rates on real videos of 3.5%
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(P = 0.034) and an increase in recruited participants’ accuracy
rates on fake videos of 11.3% (P < 0.001). In 12 of 50 videos, at
least one person in the video has dark skin (precisely defined as
skin classified as type 5 or 6 on the Fitzpatrick scoring system,
which is a classification system developed for dermatology that
computer vision researchers have used to examine the context of
skin color) (67). We find that the presence of an individual with
dark skin in the video is associated with a decrease in recruited
participants’ accuracy by 8.8% (P < 0.001) and a decrease in
the model’s accuracy by 12.0% (P = 0.192). In order to control
for these seven comparisons conducted simultaneously, we can
apply a Bonferroni correction of 1/7 to the standard statistical
significance thresholds (e.g., a P value threshold of 0.01 becomes
0.0014). Based on this correction, the influence of a flickering
face, two people in the same video, floating distractions, and
the presence of an individual with dark skin continue to be
statistically significant for participants if the original P value
threshold is chosen as 0.01.
Randomized experiments for evaluating emotion priming and
specialized face processing. Within experiment 2, we embed-
ded two randomized experiments to examine potential cognitive
mechanisms underpinning how humans discern between real and
fake videos. Specifically, we examine an affective intervention
designed to elicit anger based on a well-established interven-
tion (68) (SI Appendix, Fig. S3) and a perceptual intervention
designed to obstruct specialized processing of faces via inversion
(videos presented upside down), misalignment (videos presented
with actors’ faces horizontally split), and occlusion (videos pre-
sented with a black bar over the actors’ eyes).

We present results of the anger elicitation intervention in
columns 1 to 3 in Table 1. We do not find statistically significant
effects (P = 0.280) of the anger elicitation intervention on over-
all accuracy. However, in our preregistered follow-up analysis
limiting the dataset to real videos, we find that participants who
were assigned to the anger elicitation treatment underperformed
control participants by 5.2 percentage points (P = 0.032). In
other words, participants in the anger elicitation treatment are
more 5.2 percentage points more likely than participants in the
control group to make a false positive identification that a real
video is a deepfake. Notice here that the floor is not 0% accuracy
but rather 50% accuracy (i.e., chance responding); the maximum
effect of the anger elicitation treatment is 21.6 percentage points
(71.6 from the constant term in column 2 of Table 1 minus 50),
so a 5.2 percentage point reduction represents an effect that is
24.1% of the maximum possible effects under these conditions.

SI Appendix, Fig. S3 presents accuracy and confidence scores
by treatment assignment to visually reveal the heterogeneous
effect of anger elicitation on how participants discern between
real and fake videos. When we examine the relationship between
assignment to the anger elicitation group and how confidently
participants guess, we do not find a statistically significant effect
(P = 0.347). When we examine real videos and the relationship
between anger elicitation and updating predictions after seeing
what the model would predict, we find that participants assigned
to the anger elicitation group are 3.7% (P = 0.100) more likely to
change their guess to a correct answer than participants assigned
to the control group. As a result, we do not find statistically sig-
nificant effects of anger elicitation on accuracy after participants
update their response (P = 0.246).

We present results of the perceptual obstruction intervention
in columns 1 to 6 in Table 1. We find statistically significant effects
of all three specialized processing obstructions on participants’
ability to accurately identify deepfakes from authentic videos.
The overall effects—reported in column 1 of Table 1—are all
statistically significant and range from a decrease of 4.3 percent-
age points in accuracy for the inversion treatment (P = 0.002),
to a decrease of 4.4 percentage points in accuracy for the eye
occlusion treatment (P = 0.004), to a decrease of 6.3 percentage

points for the misalignment treatment (P < 0.001) on a base rate
of 65.5% accuracy when controlling for video fixed effects. In
addition, we find that inverting the videos decreases participants’
reported confidence scores (absolute distance in guesses from the
50–50 selection) by two percentage points (P = 0.002), but we do
not find similar decreases in reported confidence on videos with
misalignment or occlusion transformations.

In the sample of recruited participants, the specialized face
processing obstructions have different effects depending on
whether the videos are manipulated or not. When we limit the
analysis to the algorithmically manipulated deepfakes (column 3
of Table 1), we do not find statistically significant effects on
the inversion treatment (P = 0.638), but we do find that the
misalignment and eye occlusion treatments show a decrease
by 7.7 (P = 0.002) and 6.3 (P = 0.008) percentage points,
respectively, relative to the control videos. In contrast, when we
limit the analysis to the other half of videos that have not been
manipulated (column 2 of Table 1), we do not find statistically
significant effects for misalignment (P = 0.075) or eye occlusion
interventions (P = 0.263), but we find participants’ accuracy on
inverted authentic videos is 9.1 percentage points lower than
when the videos are upright (P < 0.001).

The experimental results on nonrecruited participants provide
a replication and robustness check for the results on the recruited
participants. The results from the nonrecruited participants were
not preregistered because we weren’t expecting many people to
continue visiting our website organically. In fact, 9,188 visitors
participated in the single video design between November 2020
and January 2021. In columns 4 through 6 in Table 1, we present
the linear regressions results of the specialized face processing
obstruction interventions on nonrecruited participants’ accuracy.
Similar to the results for the recruited sample, we find statistically
significant effects (P < 0.001) of all three obstruction interven-
tions on ability to accurately discern deepfakes from authentic
videos. The number of observations in the nonrecruited sample
is over 16 times larger than the number of observations in the
recruited sample. Likewise, the number of participants is 33 times
larger. These numbers differ because the number of videos seen
by participants in the nonrecruited sample varied depending on
participants’ interest. With a larger sample size, we see statisti-
cally significant and negative effects of obstructions on all videos
ranging from a 4 percentage point drop in accuracy from the eye
occlusion intervention (P < 0.001) to a 7 percentage point drop
on accuracy from the misalignment intervention (P < 0.001). We
also find all three treatments decrease participants’ confidence
scores by one-half to one percentage point (P < 0.001).

In the nonrecruited sample, each of the 50 videos were viewed
by between 945 and 1,168 participants. We run separate linear
regressions for each video and find statistically significant and
negative effects at the 1% significance level for inversion in 24
videos, misalignment in 15 videos, and occlusion in 20 videos.
Furthermore, we find at least one of these specialized processing
obstructions is negative and statistically significant at the 1%
significance for 29 of the 50 videos.

In the sample of videos of political leaders, the specialized face
processing obstructions had a significant effect on participants’
ability to accurately identify the Vladimir Putin deepfake as
a deepfake. The misalignment obstruction leads to a drop in
accuracy of 20.7 percentage points (P = 0.001). Likewise, the
occlusion obstruction leads to a drop of 10.3 percentage points
(P = 0.002), and the inversion obstruction leads to a drop of 5.2
percentage points (P = 0.072).

In columns 7 through 9 in Table 1, we present the linear
regression results of the specialized face processing obstruction
interventions on the model’s predictions and find the computer
vision model is affected by one specialized face processing ob-
struction but not the other two. We find the computer vision
model’s predictive accuracy drops by 12.1 percentage points on
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Table 1. Treatment effects of interventions on accuracy

Dependent variable: Accuracy

Recruited Nonrecruited Computer

All Real Fake All Real Fake All Real Fake

Constant 0.655∗∗∗ 0.716∗∗∗ 0.567∗∗∗ 0.679∗∗∗ 0.700∗∗∗ 0.632∗∗∗ 0.813∗∗∗ 0.786∗∗∗ 0.841∗∗∗

(0.009) (0.014) (0.015) (0.002) (0.003) (0.003) (0.030) (0.040) (0.044)
Inversion −0.043∗∗∗ −0.091∗∗∗ 0.010 −0.053∗∗∗ −0.080∗∗∗ −0.027∗∗∗ −0.121∗∗∗ −0.110∗ −0.132∗∗

(0.014) (0.021) (0.021) (0.004) (0.006) (0.006) (0.042) (0.056) (0.063)
Misalignment −0.061∗∗∗ −0.042∗ −0.077∗∗∗ −0.070∗∗∗ −0.056∗∗∗ −0.084∗∗∗ 0.011 0.000 0.021

(0.016) (0.024) (0.025) (0.005) (0.007) (0.007) (0.042) (0.056) (0.063)
Eye occlusion −0.044∗∗∗ −0.023 −0.063∗∗∗ −0.040∗∗∗ −0.035∗∗∗ −0.043∗∗∗ −0.003 −0.007 0.001

(0.015) (0.021) (0.024) (0.004) (0.006) (0.006) (0.042) (0.056) (0.063)

Anger −0.020 −0.052∗∗ 0.012
(0.014) (0.024) (0.021)

Number of participants 229 229 229 7,563 6,368 6,670 0 0 0
Number of guesses (real) 2,349 1,514 835 27,446 18,524 8,922 81 76 5
Number of guesses (deepfake) 1,707 549 1,158 22,766 6,316 16,450 87 7 80
Number of guesses (50–50) 180 68 112 3,713 1,726 1,987 32 17 15
Number of unique videos 50 25 25 50 25 25 50 25 25

Observations 4,236 2,131 2,105 53,925 26,566 27,359 200 100 100
R2 0.180 0.069 0.225 0.185 0.057 0.273 0.062 0.054 0.073
Adjusted R2 0.170 0.056 0.215 0.184 0.057 0.272 0.048 0.025 0.044
Residual SE 0.340 0.329 0.350 0.349 0.350 0.346 0.210 0.198 0.222
F statistic 288.686∗∗∗ 164.804∗∗∗ 169.388∗∗∗ 3,687.143∗∗∗ 2,150.874∗∗∗ 4,525.903∗∗∗ 4.337∗∗∗ 1.841 2.514∗

Linear regressions on participant data include video fixed effects with Eicker–Huber–White SEs clustered at the participant level. ∗ P<0.1; ∗∗ P<0.05;
∗∗∗ P<0.01.

the inverted videos (P = 0.005). We do not find a statistically
significant difference in accuracy between either the control
and misalignment sets of videos (P = 0.800) or the control and
occlusion sets of videos (P = 0.944).

Discussion
How do ordinary human observers compare with the leading
deepfake detection models? Our results are at odds with the com-
monly held view in media forensics that ordinary people have ex-
tremely limited ability to detect media manipulations. Past work
in the cognitive science of media forensics has demonstrated that
people are not good at perceiving and reasoning about shadow,
reflection, and other physical implausibility cues (9–12). On first
glance, deepfakes and other algorithmically generated images of
people (e.g., images generated by StyleGAN) look quite realistic
(35). But we show that deepfake algorithms generate artifacts
that are perceptible to ordinary people, which may be partially
explained by human’s specialized visual processing of faces. In
contrast to recent research showing that ordinary people quickly
learn to detect AI-generated absences in photos (69), we do not
find evidence that participants improve in their ability to detect
deepfakes.

By showing participants videos of unknown individuals making
uncontroversial statements, we focused the truth discernment
task specifically on visual perception. The lack of additional
context creates a level playing field for a reasonably fair compar-
ison of human and machine vision, because humans cannot also
reason about contextual, conceptual clues in these videos (70). In
the two-alternative forced-choice paradigm of experiment 1, 82%
of participants respond with higher accuracy than the leading
model. In the more challenging single-video framework in exper-
iment 2, participants still perform really well, and we find that
between 13% and 37% of ordinary people outperform the lead-
ing deepfake detection model. When we aggregate participants’
responses in experiment 2, we find that collective intelligence, as
measured by the crowd mean, is just as accurate as the model’s
prediction.

In the extension of the experiment to videos of well-known
political leaders (Vladimir Putin and Kim Jong-un), participants
significantly outperform the leading model, which is likely ex-
plained by participants’ ability to go beyond visual perception of
faces. Unlike the 50 sample holdout videos, participants could
critically contemplate the authenticity of the video of the political
leader. For example, participants might have considered whether
Vladimir Putin or Kim Jong-un speak English, whether they
actually sound like they do in the video, and whether such a well-
known political figure would say such a thing. Not only do the
majority of participants identify the deepfake status of videos
of political leaders correctly, but the computer vision model
is confident in its wrong predictions. Perhaps the model failed
because it was trained on face-swapping deepfake manipulations
as opposed to synthetic lip-syncing manipulations. What the
evidence shows is that today’s leading model does not generalize
well to stylistically different videos than the videos on which it
has been trained, whereas human deepfake detection abilities do
generalize across these different contexts.

The model’s predictions helped participants improve their
accuracy overall, but whether a participant’s accuracy increased
depended on whether the model accurately identified the video
as a deepfake or not. Participants often made significant ad-
justments based on the model’s predictions, and inaccurate or
equivocal model predictions led participants astray in 8 of 10 in-
stances. Moreover, the model’s incorrect assessment of the polit-
ical leader deepfake videos is associated with a decrease in partic-
ipant accuracy, which is in line with recent empirical research that
shows deepfake warnings do not improve discernment of political
videos (71). Likewise, these results mirror other recent research
revealing human–AI collaborative decision-making does not nec-
essarily lead to more accurate results than either humans or AI
alone (72–76).

Videos are heterogeneous, high-dimensional media, and, as
a result, participants were accurate on some videos on which
the leading model failed, and vice versa. In line with recent
research examining perceptual differences between authentic
and deepfake videos (77), we identified seven salient dimensions
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across the 50 sampled holdout videos to evaluate differences
in how participants and the leading model discern authenticity:
We find that the leading model performs slightly better than
participants on low-quality videos that were categorized as
grainy, blurry, and very dark. This differential performance
suggests that the model is picking up on low-level details
that participants appear to ignore. On the other hand, we
find that both recruited and nonrecruited participants attain
similar accuracies to the model on standard quality videos.
Both participants and the model are quite adept at picking up
on flickering faces. The model has trouble discerning between
real and deepfake videos when two actors appear in the video,
while participants have no trouble in this context. This suggests
that the model may be vulnerable to changes in context whereas
participants are more robust to varying context. With respect to
visual distractions, we find that distractions are associated with
participants identifying videos more often as deepfakes. While
we showed recruited participants examples of distraction videos
that should not be reported as deepfakes, and we explicitly
described these distractions in the instructions as not necessarily
characteristic of deepfakes, we imagine the results concerning
the distraction videos may possibly reflect confusion by the
participants. Nonetheless, all reported results are robust to
the exclusion of distraction videos. In light of recent research
showing intersectional disparities in accuracy of commercial
facial recognition software (67) and the impact of race on
credibility with deepfakes (78), we examine accuracy on the
videos with dark-skin actors. Participants and the leading model
are both less accurate on videos with dark-skin actors, but, as
we reported in Results, we only find a statistically significant
difference in participants’ performance, not the model’s
performance.

In experiment 2, we find some evidence for our preregis-
tered hypothesis that anger would impair participants’ ability
to identify manipulated media. When we elicit incidental anger
(i.e., anger unrelated to the task at hand), participants’ accuracy
at identifying real videos decreases, a pattern that held across
almost all videos (see SI Appendix, Fig. S3 where participants
assigned to the anger elicitation underperform participants as-
signed to the control in 22 out of 25 real videos, and see Lim-
itations). The negative and heterogeneous effect of incidental
anger on the discernment of real (but not fake) videos may be
related to the negative and heterogeneous effect of emotion
priming on accuracy ratings of fake (but not real) news headlines
(54). Drawing on Martel et al., 2020, one potential explanation
for the negative effects of anger elicitation on the discernment
of authentic but not deepfake videos is emotion leading to an
overreliance on intuition; in this experiment, if a participant
sees something that looks like a deepfake manipulation, then
she is unlikely to think the video is real, but, if a participant
does not see something that looks like a deepfake manipulation,
then he might think he’s simply unable to spot the detailed
manipulation and may respond based on his intuition that a
video is fake rather than whether he clearly saw a manipulation
or not.

Both experiments 1 and 2 provide support for the claim that
specialized processing of faces helps people discern authenticity
in visual media. In particular, we show that three visual ob-
structions designed to hinder specialized processing—inversion,
misalignment, and partial occlusion—decrease participants’ ac-
curacy. In contrast to human visual processing, we find only
inversion and not misalignment or partial occlusion change the
model’s performance. While the computer vision model is robust
to misalignment and occlusion, this robustness may be a bug—
the model overfitting to the training data—rather than a feature.
Future research should explore whether specialized processing
in computer vision models for deepfake detection enables better
generalization to new contexts.

Limitations
We evaluated human and machine performance on 167 videos
(84 deepfake and 83 authentic videos) across experiments 1 and
2. While these videos represent a balanced group of individuals
across demographic dimensions and a variety of deepfake mod-
els, only the two political deepfake videos include lip-syncing
manipulations, which are some of the most commonly used
models for producing political deepfakes (31, 79–81). Moreover,
we do not specifically recruit expert fact-checkers or expert media
forensic analysts, and, as such, our results only generalize to the
performance of ordinary people. Our comparison of untrained
participants’ predictions to the predictions of the leading com-
puter vision model is limited to the best performance in 2020.
If current trends continue as we expect they would, computer
vision detection models will continue to improve (and possibly
incorporate more human-like specialized processing of faces to
better generalize across contexts), just as the realism of syn-
thetic media generation algorithms will continue to improve.
As a consequence, society will require more than just visual-
based classification algorithms to protect against the potentially
harmful threats that deepfakes pose (27).

The minimal context videos used here may not resemble the
most problematic deepfakes, because the videos here show un-
known people saying noncontroversial things in nondescript set-
tings. On one hand, this minimal context makes the human partic-
ipants’ performance all the more impressive because such videos
are missing many of the contextual cues they might normally
use to discern authentic videos from deepfakes. On the other
hand, perhaps videos designed to deceive are stylistically very
different from the videos from the sampled holdout. As such,
persuasive, manipulated video is important to consider in future
research. The role of persuasion in synthetic media is beginning
to be explored across varying media modalities (82, 83), but
it is not the central focus of this paper. Instead, we ask how
well the human visual processing system can detect the visual
manipulations characteristic of deepfakes. We limit the bulk of
our evaluation to uncontroversial videos of unknown actors to
focus on the visual component of truth discernment. We begin to
examine more realistic examples based on four videos of political
leaders, but a larger sample size and further experimentation is
necessary before making conclusions about how people judge
the authenticity of political deepfakes. Furthermore, there is still
much to learn about how AI systems and ordinary people can
incorporate all the other information beyond facial features to
make accurate judgments about a video’s authenticity.

In this experiment, half of the videos were real and half are
deepfakes. This is useful for comparing human and machine per-
formance, but this base rate of deepfakes does not reflect the base
rate of misinformation in today’s media ecosystems (84). In 2021,
less than a fraction of a percent of news was misinformation (85).
Future experiments might consider examining people’s ability to
identify deepfakes when they do not have foreknowledge of the
base rate of deepfakes. Moreover, an experiment embedded in a
social media ecosystem could further identify how well people
identify deepfakes within an ecologically valid context where
people have access to contextual information such as who shared
the video and how many others have shared or commented on
the video. Ultimately, there are many ways to discern between
real and fake videos, and visual perception should be considered
as one tool in a user’s toolkit for truth discernment.

We also considered how incidental emotions (i.e., emotions
unrelated to the task at hand) affect participants’ discernment
of real and fake videos. Here, our two experiments found dif-
ferent results, and so we do not draw firm conclusions about
the role of emotion on deepfake detection. In experiment 1,
the custom emotion elicitation interventions did not significantly
alter deepfake detection performance—although it also did not
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significantly alter self-reported emotions, making it unclear how
much to read into the lack of effects on performance. The results
from experiment 2, although statistically significant by conven-
tional standards, were near the cutoff for statistical significance
for authentic videos and not statistically significant for deep-
fake videos. As such, future research could further explore the
role of emotions in deepfake detection by running experiments
with larger samples, examining additional emotions, ensuring
effective elicitation, and focusing on integral emotions (emotions
elicited directly from the stimuli). Recent research shows that
inferences from feelings are context sensitive, and incidental
emotions may be more likely to lead individuals astray in judg-
ment tasks than integral emotions (86).

Implications
Relative to today’s leading computer vision model, groups of
individuals are just as accurate or more accurate, depending on
which videos are considered. Participants and the model per-
form equally well on standard resolution, visual-only deepfake
manipulations. Participants perform better on the four political
videos and the attention check video, while the computer vision
model performs slightly better on blurry, grainy, and very dark
videos. The model’s poor performance on both deepfakes of
world leaders and videos with two people instead of one suggests
that the model may not generalize well to stylistically different
videos than the videos on which it has been trained. Humans
have no problem with this kind of generalization, and, as a
consequence, social media content moderation of video-based
misinformation is likely to be more accurate when performed by
teams of people than today’s leading algorithm. As such, future
research in crowd-based deepfake detection may consider how
to most effectively aggregate wisdom of the crowds to improve
discernment accuracy beyond the crowd mean [e.g., using algo-
rithms such as the surprisingly popular answer (87) and revealed
confidence (88)].

Sociotechnical systems may benefit from the combination of
AI and crowd wisdom, but decision support tools for content
moderation must be carefully designed to appropriately weigh
human and model predictions. The confidently wrong predictions
of the model on out-of-sample videos reveals the leading model
is not ready to replace humans in detecting real-world deepfakes.
Moreover, decision support tools can be counterproductive to
accurate identification, as evidenced by the many instances in
which participants saw incorrect predictions from the model
and subsequently adjusted their predictions to be less accurate.
Instead of solely informing people on the likelihood that a
model is a deepfake, crowd wisdom could likely benefit from
more explainable AI. Given that the leading model was more
accurate at detecting certain classes of videos while humans
were better at other classes, a future human–AI collaborative
system might include additional information on video subtypes
and how humans and machines perform across these subtypes.
For example, video-level qualities (e.g., blurry, grainy, dark,
specialized obstruction, stylistic similarities to training set, or
other components upon which human and machine performance
tends to diverge) and individual-level qualities could be factored
into the interface and information presented by a human–AI
collaborative system. By presenting model predictions alongside
this information, it is possible humans could develop a better

sense for confronting conflicting model predictions and deciding
between second-guessing their own judgments and overriding the
model’s prediction. Machine-informed crowd wisdom can be a
promising approach to deepfake detection and other classifica-
tion tasks more generally where human and machine classifica-
tion performance is heterogeneous on subtypes of the data.

Specialized visual processing of faces helps humans discern
between real and deepfake videos. In future instances when
humans are tasked with deepfake detection, it is important to
consider whether a video has been manipulated in such a way
as to reduce specialized processing. Moreover, given the useful-
ness of specialized processing of faces for humans in detecting
deepfakes, it is possible that computer vision models for deepfake
detection may find use in incorporating (and/or learning) such
specialized processing (89).

Visual cues will continue to be helpful in deepfake detection,
but, ultimately, identifying authentic video can involve much
more than visual processing. When attempting to discern the
truth from a lie, people rely on the available context, their
knowledge of the world, their ability to critically reason, and their
capacity to learn and update their beliefs. Similarly, the future
of deepfake detection by both humans and machines should
consider not only the perceptual clues but the greater context of
a video and whether its message resembles an ordinary lie.

Methods
This research complies with all relevant ethical regulations, and the Mas-
sachusetts Institute of Technology’s Committee on the Use of Humans as
Experimental Subjects determined this study to fall under Exempt Category
3 – Benign Behavioral Intervention. This study’s exemption identification
number is E-2070. All participants are informed that “Detect Fakes is an
MIT research project. All guesses will be collected for research purposes.
All data for research is collected anonymously. For questions, please contact
detectfakes@mit.edu. If you are under 18 years old, you need consent from
your parents to use Deep Fakes.” Most participants arrived at the website
via organic links on the internet. For recruited participants, we compensated
each individual at a rate of $7.28 an hour and provided bonus payments
of 20% to the top 10% of participants. Before beginning the experiment,
all recruited participants were also provided a research statement, “The
findings of this study are being used to shape science. It is very important
that you honestly follow the instructions requested of you on this task,
which should take a total of 15 minutes. Check the box below based on
your promise:” with two options: “I promise to do the tasks with honesty
and integrity, trying to do them uninterrupted with focus for the next
15 minutes.” or “I cannot promise this at this time.” Participants who
responded that they could not do this at this time were redirected to the
end of the experiment.

We hosted the experiment on a website called Detect Fakes at
https://detectfakes.media.mit.edu/. SI Appendix, Fig. S4 presents a screen-
shot of the user interface for both experiments 1 and 2. The rest of the
methods are described in SI Appendix.

Data Availability. The datasets and code generated and analyzed during
the current study are available in our public GitHub repository, https://
github.com/mattgroh/cognitive-science-detecting-deepfakes. All DFDC vid-
eos are available at https://dfdc.ai/ (31), and the five non-DFDC videos
are available in our public GitHub repository, https://github.com/mattgroh/
cognitive-science-detecting-deepfakes.
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