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Abstract

A plain, blank canvas doesn’t look very beautiful; to make it aesthetically ap-
pealing requires adding structure and complexity. But how much structure is best?
In other words, what is the relationship between beauty and complexity? It has long
been hypothesized that complexity and beauty meet at a “sweet spot”, such that the
most beautiful images are neither too simple nor too complex. Here, we take a novel
experimental approach to this question, using an information-theoretic approach to
object representation based on internal ‘skeletal’ structure. We algorithmically gen-
erated a library of 2D polygons, and manipulated their complexity by gradually
smoothing out their features — essentially decreasing the amount of information in
the objects as determined by simplification of their internal skeletal structure. We
then stylized these shapes as “paintings” by rendering them with artistic strokes,
and “mounted” them on framed canvases hung in a virtual room. Participants were
shown pairs of these mounted shapes (which possessed similar structure but varied
in their skeletal complexity), and were asked to choose which shape looked best by
previewing how each painting appeared on the canvas. Experiment 1 revealed a
“Goldilocks” effect: Participants preferred paintings that were neither too simple
nor too complex, such that moderately complex shapes were chosen as the most at-
tractive paintings. Experiment 2 isolated the role of complexity per se: When the
same shapes were scrambled (such that their structural complexity was undermined,
while other visual features were preserved), the Goldilocks effect was dramatically
diminished. These findings suggest a quadratic relationship between aesthetics and
complexity in ways that go beyond previous measures of each, and demonstrate the
utility of information-theoretic approaches for exploring high-level aspects of visual
experience.
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Introduction

Look at the images in Figure 1. Beyond your experience of the colors, textures,
and shapes present in each panel, you may also find yourself with two other impres-
sions: (1) Some of these images may seem more or less beautiful to you; and (2)
Some of these images may seem more or less complex to you. These two impressions
may even interact with one another: Some images may look more or less beautiful
because they look more or less complex. These impressions thus invite a question:
What is the relationship between beauty and complexity?

Figure 1: Images differ in their beauty, and also in their complexity. As shown here, impressions
of beauty and complexity can arise not only for images that are ornamented or otherwise intended
to be beautiful (e.g., the works of art in the top row) but also for much more ordinary images
composed of simple contours (e.g., the collections of shapes in the bottom row). Despite the relative
sparseness and low dimensionality of these shapes (which were generated algorithmically and are
used in the present work), they nevertheless give rise to these dual impressions: some look more or
less aesthetically appealing, and some look more or less complex. The present work explores how
these two properties interact.

Complexity and beauty: A “sweet spot”?

One possibility is that simplicity is most beautiful, as in works of art involving
idealized forms without much extra ornamentation. Indeed, there is often something
quite appealing about viewing even simple geometric shapes, such as the Ensō figure
in Zen Buddhism or even structures such as the Great Pyramid of Giza. Alterna-
tively, another possibility is that more complex and embellished images are seen as
most beautiful, as in a frenetic Jackson Pollock canvas or an ornate stained-glass
window.
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Of course, nearly any image can be interpreted as beautiful in the right context,
and appreciating the beauty in an image goes well beyond its purely visual properties.
However, it has been long speculated that, holding all other factors constant, beauty
varies with complexity in neither of the above two ways but rather in an inverted-U
fashion, such that the most beautiful images are those that are neither too simple
nor too complex.

Indeed, a series of studies from the middle of the last century found evidence that
aesthetic preferences are greatest for images of “intermediate” complexity (Dorfman
& McKenna, 1966; Munsinger & Kessen, 1964; Munsinger et al., 1964; Vitz, 1966;
Walker, 1970). In one of these studies, for example, children and adults were shown
polygons that varied in their number of sides, from 3 sides up to 40 sides (Munsinger
& Kessen, 1964); both older and younger participants preferred shapes with 10 sides
over all others. This relationship is also predicted by theoretical accounts of aesthetic
experience, such as Berlyne’s arousal theory (Berlyne, 1973), where moderate com-
plexity and arousal potential result in maximal preference (for a recent discussion
along similar lines, see Van Geert and Wagemans, 2020; but see also Brielmann and
Pelli, 2018).

Theoretical and empirical challenges

Despite the longstanding interest in (and promise of) this hypothesis, it has also
faced a number of difficulties.

First, even the most suggestive results have not always been consistent with one
another. For example, other studies on aesthetic judgments of shapes have found
conflicting patterns relating beauty to complexity, such as a monotonic relationship
where more and more complexity is seen as less and less appealing (Day, 1968), or
even bimodal distributions (Day, 1967) that are almost opposite the middle-is-best
theory. Still other work has speculated that overall U-shaped trends are actually
driven by subsets of participants with preferences at either extreme, such that most
participants don’t especially prefer medial complexity but the group only appears to
in aggregate (Güçlütürk et al., 2016).

Indeed, these inconsistencies may derive in part from a second difficulty facing
this literature: A major challenge in all such studies is how to manipulate visual
complexity in the first place. In the studies mentioned above, complexity was varied
by a shape’s number of sides; but who is to say that number of sides is the relevant
measure of complexity? After all, it seems conceivable that two shapes of equal side-
numbers might vary in visual complexity for other reasons, or even that a shape with
fewer sides might be more complex than one with more sides — e.g., if the former
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seems to have more ‘parts’, if the parts are more richly connected to one another,
and so on.

This second difficulty is related to a third and final difficulty: How to isolate
visual complexity itself from other features that may correlate with it. For example,
shapes with more sides tend to require more ‘ink’ to produce (and amount-of-ink
has even been used as a measure of complexity; Berlyne, 1958; Vitz, 1966), have a
higher spatial frequency, and so on — making it unclear just what property is driving
preferences in these tasks (whatever those preferences may be).

In light of these difficulties, recent work on complexity and beauty has developed
new methods and approaches to overcome such challenges. However, in order to
do so, this newer work has often had to depart from the sorts of stimuli used in
the classical studies described above. For example, recent findings have found an
inverted-U-shaped relationship between beauty preferences and the entropy (Lakhal
et al., 2020) or fractal dimension (Spehar et al., 2003; Spehar et al., 2016) of images,
in ways that manipulate complexity objectively and in some cases even control for
lower-level correlates of these measures (Spehar et al., 2003). However, in order to
gain this sort of experimental control, the stimuli have often been somewhat obscure
or esoteric — such as unsegmented textures of dots or clouds (Lakhal et al., 2020),
or dense patterns of fractal noise or intersecting lines (Spehar et al., 2003) — rather
than the sorts of organic-looking objects that have been used in earlier work and
that, say, a child might draw (cf. Imamoglu, 2000). Can the rigor of these newer
approaches be used to capture the insights and experiences of more classical studies?
1

A computational geometry approach

Here, we explore such an approach. Recent advances in computational geometry
make it possible to quantify the information density of a shape, by first extracting a

1Whereas our discussion here focuses on work using basic and abstract visual stimuli, another line
of research explores the relationship between complexity and beauty in much richer visual images,
such as natural scenes and visual arrays composed of many elements. Recent work computational
measures to quantify visual complexity over such stimuli, in terms of properties such as the degree
of visual clutter in an image (Rosenholtz et al., 2007), the size of the digital file in which the image
is stored (e.g., JPEG and GIF file size in Marin and Leder, 2013), its self-similarity (Spehar et al.,
2016), or the combination of these and other aspects (Fernandez-Lozano et al., 2019). However,
these summary approaches, while very valuable and effective in the broader domain of image-level
properties, seem less suited to visual objects themselves, a basic processing unit defined by its
boundedness, cohesion, part-based structure, and so on. The rest of our paper thus focuses more
on measures suited to object-level complexity rather than image-level complexity.
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representation of its internal ‘skeleton’ (Figure 2). The shape skeleton is a blueprint-
like representation that captures many global and local patterns within a shape, and
it can be analyzed for its ‘surprisal’ (Feldman & Singh, 2006) — a measure of how
predictable or unpredictable one part of the skeleton is given another part. The
surprisal of a branch is its deviation from smoothness; more surprising branches are
those with a greater tendency to zig and zag. Cumulative surprisal is the sum of
these zigs and zags, with the addition of a penalty for the number of branches it-
self. An intuitive way to capture this measure might be to imagine a person walking
along the skeleton of a shape; the more often this person changes direction (such that
their next step was not easily predictable from their previous step), the higher the
surprisal of their walk. This surprisal-based measure just is the shape’s complexity
in a relevant and foundational sense, since it captures how ‘compressible’ the shape
is (or, alternatively, how ‘short’ its minimal description is), in ways that can come
apart from other shape properties. Moreover, mounting evidence suggests that shape
skeletons are psychologically real: They can guide actions directed at shapes (Ayzen-
berg et al., 2019; Firestone & Scholl, 2014), drive judgments of similarity (Lowet et
al., 2018), engage visual attention (Sun & Firestone, 2021a), and even play a role
in higher-level representations such as category membership (Wilder et al., 2011)
and linguistic description (Sun & Firestone, 2021b). However, they have not, to
our knowledge, been implicated in aesthetic experience itself in any experimental
context (though there have sometimes been intriguing suggestions along these lines;
Van Tonder et al., 2002).

The present studies: Skeletal complexity in aesthetic experience

Here, we take advantage of this approach to explore the link between complexity
and beauty in a novel way. We created a library of ‘families’ of geometric shapes;
for each shape family, we evolved a series of similar-looking shapes whose complexity
smoothly varied from very simple (e.g., a fairly nondescript blob) to very complex
(a highly crenulate object with an intricate internal structure; Figure 2). Instead
of making aesthetic choices among random polygons that do not share features or
body plans, participants could now compare stimuli that originate from the same
underlying ‘blueprint’, allowing us to manipulate complexity itself and ensuring that
aesthetic judgments primarily reflect this property.

To acquire beauty judgments, we also augment previous measures by designing
our experiments to be more immersive. After generating the shape stimuli, we stylize
them as ‘abstract paintings’, which then appear to participants on canvases framed
and hung in a room. Unlike previous tasks asking people to assign a beauty rating to
a shape without any further context, our approach asks participants to think of their

5



Skeletal Surprisal

Figure 2: Shape complexity as reflected in the surprisal of the shapes’ underlying skeletons. Shown
here is a single ‘family’ of shapes from Experiment 1 (upper row), as well as their (increasingly
complex) internal skeletons (lower row). (In the actual experiments, these shapes appeared as
brush drawings, and without their skeletons; the different colors are used to make the medial-axis
branches more distinguishable, but aren’t significant in any other way.)

task as selecting the most beautiful painting to hang, creating a naturalistic and
engaging context for participants to make their judgments in a more aesthetically
appropriate mood.

Finally, we also rule out certain low-level confounds that have been present in
previous investigations of beauty and complexity, by running a control experiment in
which the same shapes that had appeared previously are scrambled in ways that pre-
serve many of their low-level features but destroy the impression of them as bounded
(and beautiful) objects. We ask whether this manipulation weakens or alters the
relationship between complexity and beauty.

Together, these experiments explore a longstanding question about aesthetic ex-
perience using newer tools and approaches that allow us to go beyond previous
findings linking complexity and aesthetic experience.

Experiment 1: A “Goldilocks” relationship between

complexity and beauty

Is visual complexity related to aesthetics by an inverted-U-shaped relationship?
In other words, holding other factors constant, do people perceive medially complex
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stimuli as being more beautiful than stimuli that are “too simple” or “too complex”?
Experiment 1 investigated this question for simple and complex shapes.

Method

Open Science Practices

An archive of the data, experiment code, stimuli, and other relevant materials
is available at https://osf.io/vzxdy/. For each experiment, we pre-registered the
sample size, experimental design and analyses (including exclusion criteria and some
secondary analyses).

Participants

As stated in our pre-registration, we recruited 200 participants for this experiment
(mean age = 35 years; 109 female participants and 91 male participants). We chose
this sample size based on a smaller pilot study (N=30) that yielded similar results,
and conservatively increased the sample size given the ease of online data collection.
More generally, larger sample sizes are especially preferable in the domain of aes-
thetics, where there may be large individual variability in preferences (Palmer et al.,
2013). All participants were recruited online via Prolific (https://www.prolific.co/).
For a discussion of this participant pool’s reliability, see Peer et al. (2017).

Stimuli

All stimuli used here were simple geometric shapes. Shapes have a long history as
stimuli in studies of perceived complexity — including studies connecting complexity
and beauty (Attneave, 1957; Birkhoff, 1933; Day, 1967; Munsinger et al., 1964)
— and they are appropriate here too for several reasons. First, it is surprisingly
easy for ordinary geometric shapes to evoke rich (and variable) impressions of both
complexity and beauty; indeed, it is striking just how strongly one can feel about
the aesthetic qualities of a few connected lines (as you may experience in Figure 1).
Second, as noted earlier, advances in computational geometry allow for a succinct
and standardized measure of a shape’s “objective” complexity based on its internal
skeletal structure, such that the complexity of a shape be manipulated systematically
(Feldman & Singh, 2006) (Figure 2). Third, such shapes tend to have few (if any)
pre-existing associations, ruling out at least some confounding factors that might
otherwise contribute to impressions of beauty; whereas an image of a face or a scene
might evoke memories or symbolic meanings (which may vary across individuals),
ordinary geometric shapes are among the least semantically meaningful stimuli that
give rise to impressions of beauty.

To create the stimuli, we algorithmically generated a variety of random-looking
shapes, and then “evolved” each of these shapes into to a “family” of shapes spanning
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54321
Complexity Level

Figure 3: Sample stimuli used in the present experiments. Each row is a distinct “family” of five
shapes, which share an underlying skeletal blueprint. Each column is a different level of complexity
within a family, with skeletal complexity increasing linearly from Level 1 to Level 5.
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a wide spectrum of complexity. To first create each shape family’s “parent” shape
(which was the most complex shape in the family), our procedure defined that the
shape would ultimately have 49 sides and then generated a set of randomly located
points that should serve as the vertices of the shape’s edges. We then connected these
points using the method of Delaunay Triangulation, which maximizes the minimum
angles formed by the overall structure of the connected lines and thus tends to avoid
extremely sharp angles. Next, facets along the boundary of this triangle mesh were
removed until the resulting polygon had the predefined number of sides. Finally,
for each shape, the edges of the resulting polygon were re-sampled to 1000 points
and smoothed in order to appear more natural. Additional constraints included a
minimum angle no smaller than 10° and a maximum angle no greater than 170°, such
that the turns a shape contains would be discernible.

Next, we derived a shape “family” by gradually simplifying each of 30 parent
shapes (using ShapeToolBox1.0; Feldman and Singh, 2006). A box mask was applied
to an increasing number of consecutive points on the contour of the parent shape,
such that the curve defined by the points in the mask was flattened to the averaged
value along each axis. We started by setting up the mask size as 3 arbitrary units,
and then smoothed the shape with that mask to create the next shape; then, we
increased the size of the mask by 2 units to create the next shape, by another 2 units
to create the next shape, and so on, to eventually create 5 shapes per family, for a
total of 150 shapes in the stimulus set. A sample of these shapes can be found in
Figure 3.

Overall, the mean normalized skeletal complexity increases linearly with each of
the 5 levels, ranging from 0.085 (Level 1) to 0.8 (Level 5), and a one-way analysis
of variance (ANOVA) confirmed that our manipulation of skeletal complexity across
levels was successful (F (4, 116) = 1174.60, p < 10−5, η2 = 0.97) .

Task: Hang a painting

To probe aesthetic impressions of these stimuli, we introduced a new task in
which the participant is asked to select the best “painting” to hang in a room. To
best cue the shapes’ status as aesthetic objects, we stylized our shape stimuli as
brush drawings, and displayed them to participants as mounted on a canvas in one
of 15 possible “frames” which varied in shape and size. These framed shapes then
appeared on the “wall” of fairly non-descript gallery room that might ordinarily
display art of this sort.

On a given trial, participants saw two shapes from the same family, and could
click each one to have it appear on the wall; their task was then just to indicate which
shape-painting looked best. Note that two-alternative forced-choice tasks (2AFC) of
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Figure 4: A sample trial of our “hang a painting” task, as it appeared to participants in Experiment
1. The trial starts with an empty canvas hung on a wall, and participants may preview how two
candidate objects look in a room by clicking on each of them. The participant advances to the next
trial by deciding which canvas looks best. Readers can experience this task as participants did at
https://www.perceptionresearch.org/beautifulshapes/.

this sort have often been thought to be best-suited for aesthetic judgments (e.g., over
rating or ranking tasks; Palmer et al., 2013; see also Berlyne, 1958; Munsinger et al.,
1964; Spehar et al., 2016), especially when it is possible to exhaust all the relevant
pairwise comparisons. The probability of each stimulus being chosen is then taken
as the measure of its relative preference.

Results and Discussion

In accordance with our pre-registered exclusion criteria, 7 participants were ex-
cluded for failing to provide a complete dataset, leaving 193 participants with ana-
lyzable data.
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As can be seen in Figure 5, the average preference across the five complexity levels
showed an inverted-U-shaped pattern: The relative preference peaked at middle
levels of complexity, such that participants preferred moderately complex paintings
over paintings that were too simple or too complex.

To better understand these preferences, we ran several pre-registered analyses.
First, we grouped the spectrum of shapes into simple shapes (Level 1), moder-
ately complex shapes (Levels 2–4), and overly complex shapes (Level 5), and ran
paired t-tests between these categories. We found that participants chose moder-
ately complex shapes (54.6%) significantly more frequently than both simple shapes
(43.8%; t(192) = 4.97, p = 1.45 × 10−6, d = .36) and overly complex shapes (42.5%;
t(192) = 4.09, p = 6.32 × 10−5, d = .29).

This simple pattern was also confirmed by a second sort of analysis. First,
a mixed-effects model with participant as a random effect revealed a significant
quadratic term for the relationship between complexity level and chosen proba-
bility (b = −1.75, 95%CI[−2.21,−1.29], t = −7.47, p < 2.59 × 10−12). Second,
a one-way repeated-measures ANOVA revealed a significant effect of complexity
level (F (4, 768) = 10.12, p = 1.68 × 10−4, η2 = 0.054), and subsequent Bonferroni-
corrected paired-samples t-tests revealed a series of significant pairwise differences
(including L1 vs. L2, L1 vs. L3, L1 vs. L4, L3 vs. L5 and L4 vs. L5; all
ts[192] ≥ 3.45, ps ≤ 0.001, ds ≥ 0.25; 95% CIs [0.056, 0.11], [0.077,0.17], [0.050,
0.18], [0.070, 0.20], and [0.088, 0.17], respectively.)

These results provide evidence for the “Goldilocks” relationship between complex-
ity and aesthetic judgments: The most aesthetically appealing shapes are neither too
simple nor too complex, but rather “just right”.2

Experiment 2: Shape complexity per se

Experiment 1 revealed that moderately complex objects were preferred over very
simple objects and very complex objects, using an approach that allowed us to quan-
tify complexity computationally and acquire aesthetic judgments in a novel aesthet-
ically realistic context.

2Güçlütürk et al. (2016) suggest that inverted-U relationships between complexity and liking
could result from the combination of two distinct groups. For example, perhaps one subgroup
of participants finds simple stimuli aversive, but is positively disposed to moderately and highly
complex stimuli, while another group finds complex stimuli aversive but is positively disposed to
moderate and simple stimuli. We examined out data ruled out this result as well. Among 193
participants, only 34 people were most frequent in choosing simplest objects, and 61 preferred the
most complex objects; a strong majority of participants preferred moderately complex objects.
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Figure 5: Results of Experiment 1. We observed a robust inverted-U-shaped relationship between
complexity level of objects and their probability of being chosen. The relative preference first
increases with skeletal complexity; however, after reaching a peak, the addition of visual features
results in less attractiveness of objects. Error bars depict ±1 SEM of the probability of being chosen.
Another version of this figure, with individual datapoints shown, is available in a Supplement.

However, even though our approach aimed to vary complexity itself, the com-
plexity of a shape inevitably correlates with other visual properties. For example,
the complex shapes we used — like in previous research (Attneave, 1957; Birkhoff,
1933; Day, 1967; Munsinger et al., 1964) — tend to require more “ink” to draw,
have a higher spatial frequency, and so on. Is the Goldilocks effect observed in the
previous experiment merely driven by such low-level properties, rather than by more
sophisticated representations of complexity itself?

Of course, lower-level features must play some role in computations of higher-
level complexity (Halberda, 2019); nevertheless, it might be possible to disentangle
those influences here. Thus, to rule out a certain form of “low-level” influence in
the previous results, we conducted a control experiment to further separate objects’
skeletal complexity from more basic visual features. Specifically, Experiment 2 “box-
scrambled” the images from Experiment 1. This technique selects random square
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patches of the image and randomizes their positions, such that many local image
features are preserved but the percept of a coherent visual object is eliminated. We
then repeated our experiment with these box-scrambled images, which still varied in
properties like amount of ink — and even seemed differently complex, to a degree
— but did not give rise to the particular impression of skeletal complexity that we
were interested in here. We then asked whether the same pattern would emerge in
this context.

In Experiment 2, half of participants completed the exact same task (with the
same intact stimuli) as in Experiment 1, whereas another half of participants com-
pleted the same task with the box-scrambled stimuli. If the perception of skeletal
complexity per se underlies the aesthetic judgments we explore here, then we should
observe an attenuated pattern for the box-scrambled images relative to the intact
images.

Methods

Participants

Based on a pilot study, we pre-registered a sample size of 500 participants for this
experiment, after exclusions — specifically, 250 participants for the Intact group and
250 participants for the Scrambled group. Mean age of all participants was 37 years,
with 254 female participants and 244 male participants (2 participants did not give
their gender).

Stimuli and Procedure

To create the box-scrambled images, we divided each intact-shape image (original
size: 540px×540px) into a 6×6 region of “boxes” 90px×90px, centered on the objects
of interest. We then scrambled the location of the boxes in each image (see examples
in Figure 6). Other than that, the procedure was the same as in Experiment 1, with
half of participants in the Intact group and half of participants in the Scrambled
group.

Results and Discussion

In order to obtain our target sample of 500 participants after exclusion, 530
participants were required in total (of whom 30 were excluded from further analysis
for failing to submit complete data).

Intriguingly, the inverted-U-shaped relationship between complexity and aes-
thetic preference arose in both the Intact and Scrambled groups, indicating that even
the complexity of lower-level features interacts with impressions of beauty. However,
this pattern was much more pronounced in the Intact group, suggesting that higher-
level notions of complexity play a role over-and-above their lower-level correlates.
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Figure 6: Example stimuli used in Experiment 2. The original objects were scrambled with a
6× 6 grid. In this way, the skeletal structure of objects is destroyed, and their low-level visual cues
remain.

One way to see this is shown in Figure 7, which plots the preference for moderately
complex stimuli (as opposed to the simplest and most complex stimuli) for each
condition. As can be seen, moderately complex stimuli were chosen much more often
in the Intact group than in the Scrambled group, (with the difference in moderate
vs non-moderate being 11.4% for the Intact group vs. 2.9% for the Scrambled group,
t(498) = 5.18, p = 3.24 × 10−7, d = .46).

This simple, exploratory analysis was also confirmed by our more detailed, pre-
registered analyses. As predicted, a 2 (Scrambled group vs Intact group) × 5 (Com-
plexity level) mixed ANOVA revealed a main effect of complexity level (F (3, 1992) =
12.98, p = 1.75 × 10−5, η2 = 0.025); and more importantly, there was a significant
interaction between group and complexity (F (4, 1992) = 5.03, p = 0.011, η2 = 0.01),
suggesting that beauty relates to complexity differently in the Intact group than in
the Scrambled group.

In addition to the between-group analysis, we separately fit the data of each
group to a mixed-effects model, confirming a robust relationship between beauty
and complexity in the Intact group (F (2, 248) = 33.12 , p = 1.78 × 10−13), with
a significant quadratic term for complexity (b = −1.97, 95%CI[−2.45,−1.49], t =
−8.05, p = 3.07 × 10−14). We also discovered a subtle but significant Goldilocks effect
in those who viewed scrambled objects, but this effect was significantly attenuated
(mixed-effects model: F (2, 248) = 7.42 , p = 7.40 × 10−4; quadratic term: b = −0.53,
95%CI[−0.84,−0.22], t = −3.32, p = 0.001).
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Figure 7: Results from Experiment 2. Even though both the Intact and Scrambled groups groups
preferred moderately complex images over extremely simple or extremely complex images, this
effect was much stronger in the Intact group. Error bars depict ±1 SEM. Another version of this
figure, with individual datapoints and trendlines shown, is available in a Supplement.

Although both groups showed a Goldilocks relationship between complexity level
and beauty preferences, this quadratic pattern in scrambled objects was significantly
diminished in comparison to intact objects. As can be seen in Figure 6, the scram-
bling procedure disrupts the images status as coherent wholes, leaving only lower-
level to complexity (e.g. the amount of ink) still remained. This findings thus
replicated the pattern from Experiment 1, but also show that higher-level notions of
complexity play their own role in the beauty/complexity relationship.

Of course, it is not possible to control for all lower-level factors that correlate
with complexity, and so other variables may well play a role in generating these
results. For example, one such variable is how curved or angular an object is, which
is known to influence preference (Bar & Neta, 2006). However, we note that this
variable is thought to be linearly correlated with preference — curved objects are
most typically preferred to angular objects across the board, with more curvature
being better (see also Carbon, 2010, 2011). In a more recent study using star-like
polygons to manipulate both complexity and curvature, observers showed a stronger
preference for simple polygons when they are curved and — more surprisingly —
lower preference for moderately complex polygons when they are angular (Palumbo
& Bertamini, 2016). By contrast, our work shows a quadratic relationship between
visual preference and our variable of interest (complexity). In that case, even if
curvature accounts for some portion of the variance in our results, it seemingly would
not account for the key quadratic relationship we observe and focus on here.
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General Discussion

How does beauty relate to complexity? The present work explored this rela-
tionship using perhaps the most basic kind of stimulus in vision research: ordinary
geometric shapes. Harnessing a new approach to isolating the visual complexity of
shapes, the results reported here demonstrate that moderate object complexity gives
rise to the strongest impression of beauty, whereas overly simple and overly complex
objects are seen as less beautiful. Importantly, this “Goldilocks” effect was weak-
ened by scrambling the shapes in ways that preserved many of their low-level visual
features but eliminated their higher-level skeletal structure, suggesting that skeletal
entropy per se plays a role in grounding impressions of beauty.

Beauty and complexity: Where old meets new

This work not only provides further evidence for the long-standing “Goldilocks”
hypothesis relating complexity and beauty, but also complements existing empirical
work on this topic by combining the precision of newer computationally oriented
approaches (which have harnessed new measures of entropy and information density,
though often to abstract and sometimes obscure visual patterns; e.g., Lakhal et al.,
2020; Spehar et al., 2003; Spehar et al., 2016) with the aesthetic sense of classical
studies (which have explored more foundational units of visual cognition, but often
without the rigor of more modern approaches; e.g., Berlyne, 1973; Birkhoff, 1933;
Day, 1967; Munsinger and Kessen, 1964). Our approach characterizes the complexity
of an object in terms of its underlying entropy, and specifically in terms of the
“surprisal” inherent in its skeleton. To our knowledge, the present work is the first
to connect an object’s underlying skeletal structure to the perception of beauty, in
ways that add to the growing list of cognitive processes where shape skeletons might
play a role; Ayzenberg and Lourenco, 2019; Firestone and Keil, 2016; Firestone and
Scholl, 2014; Lowet et al., 2018; Sun and Firestone, 2021a, 2021b; Wilder et al.,
2016).

Of course, beauty is a ubiquitous and multifaceted experience that goes far be-
yond abstract shapes and their skeletons. Appreciating beauty often involves not
only basic visual processing but also higher-level cognition, as when we apprehend
the underlying messages of an artistic work or its social and cultural significance.
For example, one’s knowledge of the philosophy expressed by the Ensō figure may be
relevant to experiencing the beauty inherent in its simplicity. Additionally, there is
a component of aesthetic visual experience that is shaped by one’s prior history with
a stimulus class, as in ecological valence theories of preference (Palmer & Schloss,
2010), as well as a complex interplay between the emotions that a stimulus evokes and
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our subsequent impression of its appearance (Madan et al., 2018). However, beyond
these factors, there is surely also a component of aesthetic experience that derives
from more basic aspects of visual processing, and our work joins the many studies
that have explored those more basic factors, such as orientation (Latto & Russell-
Duff, 2002), curvedness (Bar & Neta, 2006), symmetry (Damiano et al., 2021), and
more (Birkhoff, 1933; Chen et al., 2021; Graham & Redies, 2010; Lakhal et al., 2020;
Milne & Herff, 2020; Palmer et al., 2008; Palmer & Guidi, 2011; Vitz, 1966).

Studying beauty, beautifully

Another contribution of the present work is our method of acquiring judgments
of beauty. Though images can be aesthetically pleasing even without any special en-
gagement with them, it stands to reason that aesthetic experiences are most natural
when they arise in contexts that actively promote aesthetic engagement. Whereas
much previous psychological work on aesthetic experience (perhaps even the vast
majority of such work) collects beauty judgments by asking for numerical ratings of
images, our approach was to ask participants to consider our images as though they
were ‘paintings’ hung in a gallery, and to select which painting would best decorate
the room.3 By adding a beauty-related scene and preview function to a commonly-
used 2AFC task, we provided participants an appropriate and familiar context in
which to make aesthetic judgments (here, decorating a room).

Though it might be challenging to reproduce a fully immersive aesthetic experi-
ence in a laboratory setting, there may be value in studying the perception of beauty
in a way that itself feels ‘beautiful’.
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Supplement

Figure S1: Results from Experiment 1, with purple dots showing the individual data, red dots
the group mean, and error bars 95%CI.

Intact Objects Scrambled Objects

Figure S2: Results from Experiment 2, also with individual data showed by overlaid purple dots.
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