Philosophy of Perception in the Psychologist’s Laboratory

Jorge Morales1,2 and Chaz Firestone3,4
1Department of Psychology, Northeastern University; 2Department of Philosophy, Northeastern University; 3Department of Psychological & Brain Sciences, Johns Hopkins University; and 4Department of Philosophy, Johns Hopkins University

Abstract
Perception is our primary means of accessing the external world. What is the nature of this core mental process? Although this question is at the center of scientific research on perception, it has also long been explored by philosophers, who ask fundamental questions about our capacity to perceive: Do our different senses represent the world in commensurable ways? How much of our environment are we aware of at one time? Which aspects of perception are “objective” and which “subjective”? What properties count as perceptual in the first place? Although these parallel research programs typically proceed independently in contemporary scholarship, previous eras recognized more active collaboration across philosophical and scientific approaches to perception. Here, we review an emerging research focus that aims to reunite these approaches by putting long-standing philosophical questions to empirical test. Unlike more general philosophical inspiration, this work draws a direct line from prominent philosophical conjectures or thought experiments about perception to key tests in the laboratory—such that the relevant experimental work would not (and even could not) have proceeded as it did without the preceding philosophical discussion. Finally, we explore themes arising from these interactions and point to further philosophical questions that might be amenable to empirical approaches.

Keywords
interdisciplinary research, philosophy, psychophysics, vision science

In 1688, the Irish polymath William Molyneux wrote to John Locke with a question: If a person born blind had learned to identify spheres and cubes by touch, and then they were somehow granted sight, could they identify those same objects by vision alone? This epistolary event gave rise to what is now known as Molyneux’s question, a philosophical puzzle about the relation between our senses. Locke and Molyneux, along with other empiricists, answered “no,” believing that correspondence between vision and touch was learned from experience. In contrast, Leibniz and other rationalists answered “yes,” believing that information from different senses could be related by reason alone. Many scholars have been captured by this puzzle in the centuries since, with opinion divided to the present day.

How might this sort of dispute be adjudicated? Is further reflection our only hope for resolution? Some philosophical conundrums may well be stubborn in this way, but others might be amenable to a different approach: collecting empirical data that bear on the problem of interest. Indeed, although Molyneux’s question began as a thought experiment, it could also become a scientific experiment if ever the right conditions arose. This problem thus highlights an opportunity (one that goes beyond Molyneux’s question itself): using the methods of modern perceptual psychology to advance questions from the philosophy of perception.

Boundary-blurring work of this sort has existed in the past, embodied by early figures such as James, Calkins, Helmholtz, and Michotte, who blended philosophical and scientific approaches to the study of perception. But disciplinary specialization and methodological divergence have increasingly put these fields out of touch with one another. Intriguingly, several new

Corresponding Authors:
Jorge Morales, Department of Psychology, Northeastern University
Email: j.morales@northeastern.edu

Chaz Firestone, Department of Psychological & Brain Sciences, Johns Hopkins University
Email: chaz@jhu.edu
research programs seem poised to revive this interdisciplinary relationship, as philosophers join perception scientists to answer questions of interest to both.

Here, we review some of the fruits of this new work by discussing multiple “case studies” drawing a direct line from a prominent philosophical conjecture to an empirical investigation of that question in the laboratory. These include Molyneux’s famous question, along with several other problems from decades- or centuries-old philosophical sources—including the perception of causality, the nature of visual perspective, perceptual indeterminacy, and the perception of absence. We also discuss how these empirical projects often feed back into the philosophical discussions that inspired them, creating a virtuous circle that places the two fields in genuine dialogue. Finally, we explore themes arising from these successful interactions and point to new opportunities and directions.

Molyneux’s Question

How could Molyneux’s unusual scenario be realized under laboratory conditions? Restored vision after a life of blindness might seem fantastical; indeed, the few cases that have been accessible to scientists are quite exceptional (e.g., Gregory & Wallace, 1963). However, today this remarkable state is actually the outcome of a standard medical procedure: lens replacement surgery for congenital cataracts. Cataracts are the leading cause of blindness worldwide, and the recommended treatment for infants born with them is to replace their natural lenses with artificial ones, effectively restoring their vision. However, in regions of the world where this procedure is unavailable, cataract patients often live with little to no vision. Recently, a humanitarian and scientific project offered free cataract surgery to needy children in north India, some of whom then participated in studies of restored sight.

These conditions enabled the first modern, rigorous, multisubject test of Molyneux’s question, with direct inspiration from the philosophical text (Fig. 1). Held et al. (2011) tested children between the ages of 8 and 17 with severe but curable ocular pathologies. Moments after seeing the world for the very first time, participants were introduced to novel shape stimuli (3D solids from a children’s toy set) and had to determine which of two objects (“test”—sample [s] vs. distractor [d]) was identical to a previously presented object (“sample”). Participants either held the objects without seeing them (“touch-touch”), viewed the objects without touching them (“vision-vision”), or, crucially, held the sample object and saw the test objects (“touch-vision”). Performance was near ceiling for the two intramodal tasks (touch-touch and vision-vision); however, performance was indistinguishable from chance in the cross-modal condition (touch-vision), suggesting that correspondence between the senses requires time and experience to develop. Adapted from Held et al. (2011).
sample object, then seeing the test objects (on top of the table); and, crucially, (3) “touch-vision”: feeling the sample object under the table, then viewing the test objects on top of the table. This final condition required participants to match seen with felt, despite never having done so before.

Participants performed near ceiling at touch-touch and vision-vision, suggesting proper functioning of each sensory modality (including their recently restored sight). Remarkably, however, performance fell to chance in the touch-vision condition. In other words, participants who could easily tell that two felt objects or two seen objects were the same could not tell that a felt object was the same as a seen object. The authors interpret these findings in terms of the original philosophical puzzle: “the answer to Molyneux’s question is likely negative” (Held et al., 2011, p. 552).

Beyond providing novel and unique data, this study has opened new avenues for thinking about Molyneux’s question and even reformulating it. Whereas some philosophers accept that this result resolves (some renditions of) Molyneux’s question, others argue that it reveals that the original thought experiment is ill-suited for probing intermodal commensurability. For example, Schwenkler (2013) suggests that although participants’ restored vision may have been sufficient to see the objects in blurry or degraded form (and perform intramodal matching on that basis), it may not have been sufficient to represent 3D shape so as to enable matching with tactile shape (see also Green, 2022). In any case, this work illustrates the ideal we explore in this review—having been run to test a long-standing philosophical question—and showcases the fruitfulness of this approach across disciplines and methodologies.

The Perception of Causality

Consider the billiard balls in Figure 2a. Beyond seeing their colors, shapes, and sizes, you may also find yourself with another impression: One ball has collided with the other, causing it to move. What is the nature of this impression? Do we visually experience the causal transfer of force? Or do we cognitively infer causality only upon seeing one object stop as the other moves?

This question is a perceptual gloss on Hume’s famous contention that we only ever experience the “constant conjunction” of various events—here, the position of each billiard ball at successive time points—but never their underlying causes. As philosophers have debated this claim on theoretical grounds, an empirical approach...
emerged from the Gestalt tradition in the middle of the last century, centered on judgments about visual demonstrations manipulating the spatiotemporal characteristics of billiard-ball-like interactions (Michotte, 1963). However, it has remained unclear whether these data address the key dispute over perceptual versus cognitive interpretations of such causal impressions, leading many philosophers to favor approaches exploring the phenomenology of causal versus noncausal events (Siegel, 2009).

Recently, however, a new kind of empirical evidence has emerged suggesting that causal perception truly is perception, as opposed to cognitive inference or judgment. Directly inspired by Hume’s challenge, Rolfs et al. (2013) leveraged visual adaptation, the phenomenon whereby perceiving a visual feature makes other stimuli appear to have the opposite feature (as when, e.g., staring at leftward-tilted lines makes vertical lines appear tilted rightward). Rolfs et al. extended this paradigm to the perception of causality by repeatedly showing participants causal “launches” (i.e., one disk appearing to cause another to move after touching it), followed by ambiguous events that could be seen as either launches or noncausal “passes” (i.e., overlapping disks where the first appears to pass over the second without causing it to move).

Remarkably, exposure to launches biased perception of ambiguous events toward passes (Fig. 2c). Moreover, this effect was retinotopic: When participants moved their eyes from the adaptation location to a new test location, the aftereffects followed along, remaining in the retinally defined location of the original stimuli. No cognitive (i.e., nonperceptual) process is known to exhibit retinotopy, making this pattern particularly suggestive of visual processing (Block, 2014; Hafri & Firestone, 2021; Phillips & Firestone, in press). Together, these results suggest that causality may be visually represented, not merely cognitively inferred—and, perhaps contrary to Hume, that perception distinguishes causality per se from mere constant conjunction. Multiple researchers have further explored these results (e.g., Kominsky & Scholl, 2020), with the key philosophical questions remaining central. For example, a remaining question is whether participants adapted to causation proper (i.e., visual representations of causation were involved) or instead to low-level features diagnostic of causation (e.g., spatiotemporal properties that produce a causation gestalt; Siegel & Byrne, 2017; for a related empirical study, see Arnold et al., 2015). These experiments have also contributed to a broader philosophical literature on high-level properties in perception (including not only causality but also agency, intention, emotion, and more; Block, 2014; Siegel & Byrne, 2017).

The Puzzle of Perspectival Appearance

Look at the object in Figure 3a. Although the shape it projects is that of an ellipse, we can tell that it is really a circle—a wooden “coin” rotated in depth. But which shape do we see? Do we see the coin as elliptical and only decide or judge that it is circular? Or is the reverse true, such that we immediately see its distal shape and realize only on reflection that it projects an ellipse?

A rich philosophical tradition is divided on this question. One view, tracing to the British Empiricists, holds that objects look roughly like their projections. Locke, for example, proposed that “When we set before our eyes a round globe . . . the idea thereby imprinted on our mind is of a flat circle” (Locke, 1689/1975, Book II, Chapter IX, para. 8). A contrasting view, associated with the theoretical work of scientists as different as Helmholtz and Gibson, argues oppositely—of course the rotated coin looks circular because perception represents distal 3D properties, not 2D patterns of stimulation. Myriad subtle views lie between, all addressing a fundamental question: To what extent is perception about the world out there, and to what extent is it about ourselves and our point of view?

Despite its history and centrality, much of this philosophical debate has relied more on introspection than empirical data, even with a long tradition of experimental work on shape constancy and visual perspective (Epstein & Park, 1963). For example, Schwitzgebel (2006), defending a distal-only view, writes, “As I stare at the penny now, I’m inclined to say it looks just plain circular, in a three-dimensional space—not elliptical at all, in any sense” (p. 590). Similarly, Smith (2002) writes, “the suggestion that pennies, for example, look elliptical when seen from most angles is simply not true—they look round” (p. 172). Recently, however, Morales et al. (2020) took an empirical approach aimed more directly at this philosophical discussion, testing the specific claim that rotated coins do not look elliptical “in any sense.”

Morales et al.’s (2020) approach used visual search, which probes how easily one can locate a target among distractors. Search performance is affected by the perceived similarity of targets and distractors; for example, it is easier to find a red square among blue triangles than among red triangles because red squares and red triangles share an aspect of their appearance. Morales et al. asked a corresponding question about tilted coins: If rotated circular objects look elliptical (in some sense), might they impair search for truly (i.e., distally) elliptical objects?

The answer is “yes” (Fig. 3). When participants must quickly locate a distally elliptical object, they are slower
when it is flanked by a rotated circle than a head-on circle. In other words, participants searching for ellipses are distracted by rotated circles, consistent with the two objects sharing some aspect of their appearance. Importantly, this effect persisted even when a delay was enforced between stimulus presentation and participants’ responses (allowing extra processing time) and also when the experimenters used real-world objects that sat directly in front of participants for an entire experimental session. Morales et al. (2020) take these results, together with other findings, to support “perspectival similarity” between rotated circles and head-on ellipses: There is indeed some sense in which the rotated circle looks elliptical, even once its distal shape is known.

This finding, too, has fed back into philosophical discussions, with some scholars arguing that “perspectival similarity is real and efficacious” (Green, 2022, p. 871), others questioning the theoretical implications (see, e.g., Burge & Burge, 2022, and replies by Morales & Firestone, 2023, and Cheng et al., 2022), and still others suggesting follow-up experiments to explore this issue further (Cheng, 2022).

The Problem of the Speckled Hen

Suppose you are looking at a speckled hen—a guinea fowl with spotted plumage (Fig. 4). You can see that it has many speckles, and you can even discern each speckle contributing to this impression. In this scenario, are you also aware of a *determinate number* of speckles? It seems not; for example, you would be very uncertain if asked to report this number. But how can this be? How do our minds generate a percept having some particular number of speckles while remaining ignorant of that number? This is the *problem of the speckled hen*—specifically, its “representationalist” variant (Munton, 2021)—first posed by the philosopher Gilbert Ryle.

How might this puzzle be resolved? A promising solution has been floated in the philosophical literature: Perhaps the puzzle arises from an intuitive but mistaken “pictorialist” assumption that perceiving a general property (here, number of speckles) derives from perceiving the specific properties determining it (here, each individual speckle). If impressions of the numerosity of a set of items arise wholly from impressions of the individual items themselves, then the speckled-hen scenario seems puzzling indeed; however, if individuals and summaries are processed independently, then there may be no puzzle after all. However, until recently, this solution has been speculative, without empirical grounding. Could it be supported experimentally?

Burr and Ross (2008) were motivated by this philosophical discussion: “Does a single glance at a speckled hen provide us with a . . . percept containing a definite number of speckles?” (Ross & Burr, 2008, pp. 363–364). In an empirical investigation of this question, they
demonstrated that perception of numerosity can come apart from perception of individuals. Participants stared at a display with many dots, and then they compared the numerosity of a test display appearing in the same location against a probe display appearing in a non-adapted location. This procedure produced visual adaptation: The test display now appeared less numerous. Crucially, the authors note an odd experience that results: The perceived number of dots is altered even though no particular dot seems to have appeared or disappeared. Each individual dot seems unchanged although the total number of dots seems changed—suggesting separate perceptual mechanisms for general and specific properties.

This finding has launched a cottage industry of work on numerosity perception, which has in turn supported new philosophical perspectives. For example, Munton (2021) suggests that this adaptation result is inconsistent with pictorialism, helping to “dissolve the puzzle of the speckled hen” (p. 644). (See also Block, 2023, who uses these findings in a broader account of the perception/cognition distinction.)

The Perception of Absence

You return to your locked-up bicycle and immediately notice the front wheel missing. (Oh no! It was stolen while you were gone.) As you stare at your incomplete frame, you have a visceral sense of the wheel’s absence; there is not just empty space where the wheel once was—there is a missing wheel. What is the nature of this experience?

A long-standing philosophical tradition explores the metaphysics of absences, distinguishing them from mere empty space and even from holes, shadows, and occluded parts. Intriguingly, this tradition also proposes that we can perceive absences. A prominent example is Sartre’s (1943) case of arriving to meet his friend Pierre at the café but then seeing that Pierre is (unexpectedly) missing, which Sartre suggests is a genuine perceptual experience of absence. Contemporary philosophers argue both sides of this issue, some affirmatively (Farennikova, 2013) and others not: “While thought can range over positive and negative objects . . . no perceptions are of negative objects” (O’Shaughnessy, 2023).
At stake is a fundamental question about what we can perceive. Indeed, if we can genuinely see absences, then Marr’s field-defining characterization of visual perception—“the process of discovering from images what is present in the world, and where it is” (p. 3)—may need revising, since it would turn out that we can see not only what is present but also what is absent. However, these discussions have proceeded mostly by reflecting on the phenomenology of the relevant cases. Could psychophysical evidence provide insight?

Motivated by these debates, Morales and Firestone (2021) and Goh et al. (2022) took an experimental approach, asking whether absent objects can “substitute” for present objects in certain psychophysical paradigms (Fig. 5). One signature of (present) objects is that their onset captures attention: When an object suddenly appears, we spontaneously attend to it, as measured by facilitated probe detection at the object’s location. Inspired by scenarios such as the missing bicycle wheel, Morales and Firestone demonstrated that this signature extends to absent object parts. For example, if a butterfly missing a wing suddenly appears, probe detection is facilitated not only on the visible parts of the butterfly but also at the location of the missing wing. Goh et al. pursued a similar substitution approach for temporally extended absences. In the “one-is-more illusion” (Yousif & Scholl, 2019), a single stimulus lasting a certain duration is perceived as longer than two consecutively appearing stimuli. Goh et al. adapted this paradigm to study absences by showing participants an object that disappears for either one long period or two short periods. (c) Top: When presented with an object missing a part, attentional mechanisms enhance processing in the otherwise empty region where the missing part would have been. In other words, attentional processing is facilitated in absent space more so than in empty space, suggesting that visual processing is, in some way, sensitive not only to what is there but also to what is missing. Bottom: Even when events with present stimuli are replaced by events with absent stimuli, the one-is-more illusion remains, with participants judging the single long moment of absence as longer than the two short moments of absence, suggesting that the visual system treats events characterized by absent stimuli in similar terms as events characterized by present stimuli.
Research opportunities at the intersection of the philosophy and psychology of perception. Several other philosophical questions about perception may be amenable to empirical approaches. (a) The perception of silence. When we hear the end of a piece of music, a pause in a conversation, or a break in the rain, do we perceive the absence of sound? Clearly, we can perceive the sounds that come before and after a silence, but do we also perceive silence itself? A fascinating philosophical literature asks whether we (perceptually) hear silence or instead only (cognitively) know silence on the basis of failing to hear (O’Shaughnessy, 2000). A promising approach may be to ask whether signatures of auditory event segmentation arise for moments of silence. (b) Multisensory perception. Are there any perceptual experiences that are “irreducibly multisensory”? Or are multimodal perceptual experiences simply the sum of their unimodal parts? Although this question has been the subject of considerable philosophical attention (O’Callaghan, 2019), it may also be open to empirical investigation through cases of multisensory object individuation (Harrar et al., 2008). (c) The format of perceptual representations. Does perception furnish the mind with only iconic representations of the world? Or are some perceptual
representations discursive and/or language-like? Green and Quilty-Dunn (2021) propose that the empirical literature on object files may bear on this question if the contents of object-file representations can be shown to be sufficiently abstract and symbolic. (d) Perceptual confidence. According to a recent philosophical proposal, not only do beliefs assign degrees of confidence but perceptual experiences do, too (Morrison, 2016). When you see someone at a distance, you may be perceptually unsure whether they are your friend Sam; as they come closer, your perceptual confidence increases (which presumably justifies your increased credence that your friend Sam is before you). Can methods from vision science disentangle confidence in cognition from confidence assigned by perceptual experiences themselves? (e) Cognitive penetration of perception. One area with considerable interdisciplinary interaction is the debate over the cognitive penetration of perception. For example, inspired by Macpherson’s (2012) discussion of memory color effects (in which, e.g., a gray banana may appear tinged with yellow), Valentí and Firestone (2019) provided evidence for a nonperceptual interpretation of such effects based on earlier work on the El Greco fallacy. Other opportunities include (f) the perception of modal properties (e.g., states or properties that are merely possible but not actual), as illustrated here by the salient impression you may have that these two puzzle pieces can fit together to create something new (Guan & Firestone, 2020); (g) the intensity of perceptual experiences (e.g., the modulatory role of perceptual and attentional factors in the degrees of perceptual awareness), which could be explored through dissociations between the intensity of stimulation and the intensity of experience; (h) the determinacy (or indeterminacy) of mental imagery, as illustrated by scenarios such as imagining a purple cow (was it facing in a particular direction?) or a house (did it have a chimney? Schwitzgebel, 2002), which could be investigated using paradigms in which imagining certain visual features can alter conscious awareness of those features in subsequently presented stimuli (Pearson et al., 2008); and (i) conceptual versus nonconceptual perceptual content, a debate that might be explored through categorical color sensitivity in creatures without color concepts (as suggested by Block, 2023; see Skelton et al., 2017).

Goh et al. replicated this finding with absences: A single long disappearance seems longer than two short disappearances of the same temporal extent. These findings suggest that absent objects can display similar psychophysical signatures as present objects, and they have already fed back into philosophical discussions concerning the claim that we can perceive what is missing (Block, 2023).

An Interdisciplinary Invitation

The philosophy and science of perception increasingly make contact with one another, as philosophers support their views using scientific research (Block, 2014; Macpherson, 2012) or inject clarity and insight into perception science (Phillips, 2021)—sometimes even in conversation across fields (e.g., Denison et al., 2022; Knotts et al., 2019).

However, the work reviewed here goes a step further: Empirical data are not merely fuel for philosophical discussion but are actively collected to address questions from the philosophy of perception. In some instances, philosophical thought experiments are directly fashioned into laboratory studies; in others, new methods and paradigms breathe fresh air into old debates.

Indeed, still other questions from the philosophy of perception may be amenable to empirical approaches (Fig. 6). For example, questions concerning the perception of absence extend beyond vision to other sensory domains, including auditory absences: When a room is silent, do we positively perceive the absence of sound? Or do we merely infer that silence is present when we fail to hear (O’Shaughnessy, 2000)? Goh et al.’s (2022) “substitution” approach for visual absences could be illuminating here, as well, if auditory illusions previously explored with sounds also arise for moments of silence (e.g., if one long period of silence is experienced as longer than two short silences of the same combined duration).

A conceptually nearby problem concerns sensory integration. When we have a perceptual experience spanning multiple senses (e.g., the sight, smell, and feel of a fresh baguette), can our experience be factored without remainder into separate unisensory components (such that the whole is essentially the sum of its parts)? Or are there “irreducibly multisensory” experiences (O’Callaghan, 2019)? Building on experiments by Harrar et al. (2008), Green (2022) proposes that evidence for irreducibly multisensory experiences might be found in multimodal apparent motion—specifically, if conditions can be created in which participants perceive a single individual simultaneously move through space and across sensory domains (e.g., perceiving a flash in one location transform into a tap on a finger).

Another opportunity might be the debate over the format of perception: Are all perceptual representations purely imagistic, or are some symbolic and/or language-like? A recent philosophical inroad has been through discussion of object files—visual indexes and short-term memory stores in which object features are encoded. For example, Green and Quilty-Dunn (2021) explored findings suggesting that object files represent not only basic visual features, such as color and shape, but also abstract features, such as category membership (e.g., fish)—a point that may favor abstract symbols in visual perception. However, the empirical literature has proceeded without much concern for this philosophical debate, leaving interested philosophers to examine only those studies that happen to appear for other reasons. A philosophically informed empirical research program could ask just how abstract the contents of object-file representations can be, with an eye for broader questions about perceptual formats. A related future direction is the recent proposal that perceptual experiences
assign degrees of confidence (Morrison, 2016). Consider this example: At a distance, someone walking toward you looks like they could be your friend Sam; as they get closer, it looks like they probably are Sam; finally, you plainly experience Sam before you. In this case, your beliefs almost certainly assign degrees of confidence (‘I am 50%/75%/100% sure that is Sam’). But does your perceptual experience itself also involve degrees of confidence (i.e., a perceptual confidence assignment before you form a belief)? This philosophical debate already blends approaches from philosophy and vision science—but it is ripe for a direct experimental approach (Denison et al., 2022).

Of course, few scientific experiments truly resolve the questions they address, and the present studies are no exception; indeed, several cases reviewed above generate further controversy. What is clear, however, is that work of this sort enriches each of the fields it touches—by advancing philosophical debates that were at risk of stagnation and by introducing new questions and problems into perception science. In that case, this article may be seen not only as a review of recent progress but also as an invitation for further interaction between these fields.

Recommended Reading

Munton, J. (2021). (See References). An attempt to resolve an old philosophical puzzle by appeal to new empirical data.

Transparency

Action Editor: Robert L. Goldstone
Editor: Robert L. Goldstone
Declaration of Conflicting Interests
The author(s) declared that there were no conflicts of interest with respect to the authorship or the publication of this article.

ORCID iDs

Jorge Morales https://orcid.org/0000-0001-5825-4909
Chaz Firestone https://orcid.org/0000-0002-1247-2422

Note

1. Intriguingly, when three of the five original participants were retested, some only 5 days later, they performed well above chance at vision-touch matching. So although Molyneux’s question may have a negative answer as literally written, Held et al.’s (2011) own results suggest that matching across senses can arise after extremely minimal learning.

References

Guan, C., & Firestone, C. (2020). Seeing what’s possible: Disconnected visual parts are confused for their potential...

