
Nature Human Behaviour

nature human behaviour

https://doi.org/10.1038/s41562-025-02249-8Article

The psychophysics of style
 

Tal Boger       & Chaz Firestone     

Among the most significant modes of human creative expression is style: 
the capacity to represent objects, events and scenes (for example, lilies 
dotting a pond) in some distinctive manner (for example, Monet’s broken 
brushstrokes and blended colours). Diverse research traditions analyse the 
social, political and aesthetic significance of stylistic representation. But 
what are the cognitive and computational foundations of this capacity? 
Here we characterize style perception as a process that ‘parses’ form from 
content, and adapt classic psychophysical paradigms to discover multiple 
new phenomena of style perception. Using both naturalistic images and 
synthetic stimuli, ten experiments reveal perceptual ‘tuning’ to stylistic 
information, representational constancy over stylistic variation, and 
mental rendering of novel styled objects. Moreover, an object recognition 
model further grounds style perception by capturing human judgements 
of image similarity over different styles. Together, this work illuminates the 
psychological foundations of stylistic perception and opens the door to 
further investigation of styled media.

When looking at a painting, such as Van Gogh’s Starry Night (Fig. 1a), 
what do we see? Certainly we see the painting’s subject—a French village 
beneath a night sky, viewed from the window of an elevated monastery. 
Equally salient, though, is the painting’s style—its dark palette of blues 
and yellows, dreamlike aura and whirl of spiralling textures. In other 
words, the scene is portrayed in a certain manner, which is as much a 
part of the painting as the scene itself.

A distinctive aspect of style is that it can vary independently of con-
tent. For example, the same village scene might look entirely different if 
painted by a realist aiming to preserve naturalistic details, and different 
still if painted by an abstract expressionist wishing to convey emotion 
or inner experience. This distinction also arises outside of art galleries 
and museums, as when we appreciate a piece of clothing or furniture, 
an unusual set of cutlery or a row of homes in a neighbourhood. For 
example, a fork in a cutlery set is likely to have tines and a handle—but 
its shape, finish and ornamentation may be subject to stylistic variation. 
Similarly, a house generally requires a door, roof, windows and space 
for inhabitants—but the size, layout and appearance of these elements 
may differ in a Victorian home as compared with a cottage or ranch.

The ubiquity and salience of style have generated longstanding 
scholarly interest in a variety of research traditions, including sociology1,2, 
history3 and, of course, art theory4,5. But how does the mind separate style 
from content in the first place? Surprisingly, little is known about the 

psychological basis of visual style perception. Of course, there is a rich 
psychological literature on visual aesthetics6–8, which has explored the 
patterns humans prefer9–13, to what extent aesthetic preferences reflect 
stable traits of individuals14 and which patterns of neural activity are 
associated with aesthetic experiences15–17. However, a psychologically 
grounded account of visual style itself has been elusive (cf. refs. 18–21). 
Thus, fundamental questions remain unanswered (and even unasked): 
What is the nature of stylistic perception, what psychological mecha-
nisms does it draw upon and what are its psychophysical signatures?

Here, we address these questions by drawing on methods and 
insights from both classic psychophysical studies and recent advances 
in generative artificial intelligence. A long tradition in experimental psy-
chology explores how human perception ‘parses’ the content of a stimu-
lus from its context or conditions of presentation—as when we achieve 
colour constancy over different illumination conditions22,23, adapt to 
accented speech24 or extract letter identities from different typefaces25. 
More recently, modern machine-learning technologies have enabled 
the synthesis of stylized images, whereby a model can extract aspects of 
artistic style from one image (for example, Starry Night) and then flexibly 
apply them to any other image (for example, ordinary natural scenes)—a 
technique known as style transfer26,27 (Fig. 1b). For example, this process 
can create novel images of mountains, beaches, bedrooms and libraries 
in the style of Starry Night, or indeed any other painting (Fig. 1c).
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letter recognition25. In a typical font tuning paradigm, participants 
see a passage of text in either a single typeface or multiple type-
faces and are tasked with making judgements about the presented  
text (for example, counting how many tokens are non-words as 
opposed to words). The key finding is that text appearing in a single 
typeface is more easily read than text appearing in multiple type-
faces, even if each typeface is familiar and otherwise readable on 
its own—suggesting a tuning process whereby perception extracts 
(and then adapts to) the font in which the text is rendered. However, 
letters and typefaces constitute a fairly circumscribed case, due to 
relatively limited dimensions of typeface variation and a constrained 
set of underlying contents (that is, the letters of the alphabet). Might 
a similar phenomenon arise in the more complex and open-ended 
context of artistic style?

Experiment 1 adapted the font-tuning paradigm to visual style 
(Fig. 3). Using the style-transfer model described by Ghiasi et al. (ref. 27,  
which adapts a model proposed in ref. 26), we generated a stimulus set 
consisting of natural images of scenes (for example, mountains and 
libraries30) rendered in the style of famous paintings (for example, Van 
Gogh’s Starry Night, Monet’s Water Lilies and so on). We then designed 
a ‘style tuning’ task using these images. On each trial, participants 
viewed a row of images (analogous to a sentence in font tuning) and 
simply had to count how many images depicted mountains (or one 
of the other scene types, randomly assigned to each participant). 
Crucially, in half of trials, the images appeared in a single style; in the 
other half of trials, the images appeared in multiple styles (interested 
readers may view all tasks, along with a repository containing all 

The present work combines these approaches to investigate the 
cognitive mechanisms underlying style perception. We conceive of 
style perception as akin to the well-characterized parsing processes 
mentioned above (for a similar approach outside the context of artistic 
style, see ref. 28) and then explore those processes using newly available 
style-transfer techniques (as well as naturally occurring styled images, 
such as styled sets of cutlery). Framing style perception as an instance 
of the mind parsing content from form opens the door to adapting 
established psychophysical paradigms to the study of artistic style, 
and using style-transfer techniques allows the generation of a large 
image set that varies mostly or only in style (while preserving underly-
ing content, composition and so on) in ways that would be difficult or 
impossible to achieve with purely naturalistic images.

Here, in ten preregistered experiments, this approach reveals 
multiple new phenomena of style perception (Fig. 2). These results 
both (1) constitute new discoveries in their own right and (2) testify 
to the promise of ‘parsing’ as a working model for the study of style 
perception. Finally, we show that a computer-vision model trained on 
object recognition (ResNet-18, ref. 29) predicts subjective impressions 
of similarity across styles. Together, this theoretical framework and set 
of empirical results help to illuminate the cognitive and computational 
basis of style perception.

Results
Experiments 1–4, style tuning
Our first set of experiments was inspired by font tuning, whereby 
observers adapt to typefaces in ways that aid reading fluency and 
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Fig. 1 | Extracting and applying artistic style. a, Starry Night by Vincent Van Gogh.  
Readers are invited to notice not only the content of the image (a French village 
beneath a night sky), but also its style, including its palette, swirling textures 
and dreamlike aura. b, A schematic depiction of ‘style transfer’26,27, a process 
that analyses a ‘style image’ s to infer an embedding vector S, which is then 
transferred to a ‘content image’ c. This results in an image, x, which depicts the 
content image in the given style. In generating this image, the network is trained 

to minimize loss in both style (that is, the style difference between x and s) and 
content (that is, the content difference between x and c), here defined by VGG 
embedding vector distances. c, Many of our experiments exploit this process to 
study the perception of style, by generating natural scenes (mountains, libraries, 
bedrooms and beaches; 29) in the styles of famous paintings (for example,  
Van Gogh’s Starry Night, Monet’s Water Lilies, Klimt’s The Kiss) and placing them 
in adaptations of classic psychophysical paradigms.
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preregistrations, data and analyses, at https://perceptionresearch.
org/style). We predicted that, just as same-typeface sentences are 
easier to read than mixed-typeface sentences (resulting in faster read-
ing times), same-style image arrays would be more easily processed 
than mixed-style image arrays (resulting in faster scene-identification 
times)—reflecting the visual system’s ability to learn a mapping 
between styles and scene identities.

Indeed, participants were significantly faster to enumerate scenes 
in same-style trials (mean (M) = 5,418 ms) than in mixed-style trials 
(M = 5,707 ms, difference 289 ms; t(43) = 4.93, P < 0.001, d = 0.74, 95% 
confidence interval (CI) 171–407 ms; this and all other t-tests reported 
here are two-tailed dependent-samples tests over participant-level 
means). This speed advantage did not come at the expense of accu-
racy, which was also higher on same-style trials (M = 72.03%) than on 
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Fig. 2 | Adapting psychophysical paradigms to study artistic style. Top: in font 
tuning, readers become more fluent and accurate after adjusting to the typeface 
of text; the present experiments adapt this paradigm to introduce style tuning, 
whereby target detection improves over time when artistic style is held constant. 
Middle: a core visual process is discounting the illuminant, enabling perceivers 
to see the same surface colours across different illumination conditions. Here, 
we explore an analogous process—style discounting—enabling perceivers to see 
the same scene content across different artistic styles. A change-detection task 
tests whether scene changes are more easily detected than style changes, even 
when the two change types are equated for image similarity. Bottom: in semantic 

priming, salient properties of items one has encountered can create false 
memories in which one internally generates representations of items one has not 
encountered (for example, misremembering ‘sweet’ after encountering ‘candy’, 
‘taste’ and ‘treat’). The present work reveals a similar pattern in style perception: 
After seeing a spoon and fork from a cutlery set with a given style, the mind 
may generate a representation of the knife from that set, despite never having 
encountered it before. Such style extrapolation implies that the mind integrates 
the style of items one has seen with other background knowledge to infer the 
likely appearance of unseen objects.
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Fig. 3 | Style tuning. Experiments 1–4 adapted font tuning paradigms by asking 
participants to enumerate a target scene type (for example, mountains) within 
an array of styled images. Half of the time, all of the images appeared in the same 
style (for example, as seen in the green outlines above); the other half of the time, 
the images appeared in a mix of styles (for example, as seen in the blue outlines 
above). Participants were significantly faster and more accurate on same-style 
arrays than mixed-style arrays, not only on the level of same-style versus  

mixed-style but also on the style and participant level (experiment 1, N = 44). This 
effect arose for arrays of as few as three images (experiment 2, N = 46), survived 
controls for low-level image properties (experiment 3, N = 44) and accumulated 
over time (experiment 4, N = 42). Data are presented as means ± 95% CIs of the 
difference between conditions. All statistical tests are paired, two-sided t-tests; 
***P < 0.001. RT, response time.
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mixed-style trials (M = 65.29%, difference 6.74%; t(43) = 6.10, P < 0.001, 
d = 0.92, 95% CI 4.51–8.97%; preregistered as a secondary analysis for 
this experiment). Thus, just as perception adapts to the typeface of 
text or even the accent of a speaker, it also adapts to an image’s style—a 
novel phenomenon we refer to as style tuning.

Experiment 2 varied the number of images in the arrays (3, 5, 7 or 9)  
to ask how quickly the mind adapts to style. Might these effects arise 
with very few examples? Indeed, we found that style tuning occurred 
both across the full sample (that is, at the same-style versus mixed-style 
level; mean difference 123 ms; t(43) = 3.53, P < 0.001, d = 0.52, 95% 
CI 53–193 ms) and at each subsample (three-image arrays: 98 ms; 
five-image arrays: 108 ms; seven-image arrays: 197 ms; nine-image 
arrays: 89 ms). Thus, style tuning occurs with as few as three examples. 
The rapid nature of style tuning continues to mirror font tuning, which 
arises not just for words in a longer paragraph but even for individual 
letters in a short string25.

Experiment 3 asked whether low-level image differences may be 
driving style tuning effects. Notice, for example, that Van-Gogh-styled 
scenes tend to be blue and yellow, while Munch-style scenes tend to be 
reddish, and that the images vary along other dimensions as well (for 
example, luminance); perhaps, then, our results are driven by the dif-
ficulty of jumping from a blue scene to a red one, or from a dark scene 
to a bright one. To control for such factors, we repeated experiment 1 
with greyscale, luminance-matched versions of our style-transferred 
stimuli (created using the SHINE toolbox in MATLAB31). Previous work 
shows that neural networks trained to classify style do so in ways that 
go beyond the colour distributions of the images32, implying that style 
perception might persist even without these features. Indeed, we 
found that style tuning survives these low-level controls: participants 
in experiment 3 were still faster (mean difference 267 ms, t(43) = 5.61, 
P < 0.001, d = 0.85, 95% CI 171–364 ms) and more accurate (mean dif-
ference 8.26%, t(43) = 7.37, P < 0.001, d = 1.11, 95% CI 6.00–10.53%) on 
same-style trials than mixed-style trials.

Finally, experiment 4 explored the timecourse of style tuning. 
Instead of enumerating the mountain scenes by entering a single 
response at the end of a trial, participants in this experiment clicked 
on each target image with their cursor, thereby providing multiple 
responses to analyse in each trial. We discovered that tuning accumu-
lates over the course of a trial: the further into an image array, the larger 
the same-style advantage (r(376) = 0.27, P < 0.001, 95% CI 0.17–0.36). 
To further examine this pattern, we fit a linear mixed-effects model 
that predicts response times, with a random effect of participant and 
fixed effects of click index (that is, how many images were previously 
clicked), trial type (same style or mixed style) and their interaction. We 
hypothesized that the interaction of click index and trial type would 
significantly predict response times, as expected if the same-style 
advantage accumulates over time; indeed, this interaction was sig-
nificant (t(711) = 3.25, P < 0.01). As before, participants were also faster 
at same-style trials than mixed-style trials (mean difference 192 ms, 
t(41) = 5.89, P < 0.001, d = 0.91, 95% CI 126–258 ms). Together, these 
results demonstrate that style tuning exists, onsets rapidly, survives 
low-level controls and accumulates over time.

Experiments 5 and 6, style discounting
As noted earlier, our approach is to conceive of style perception as a 
process that parses an image into two components: the content being 
portrayed, and the manner in which it is portrayed. Perhaps the most 
foundational example of such a process in visual perception is colour 
constancy—the ability to perceive the ‘same’ reflectance properties 
under different conditions of illumination22,23. For example, we can 
see the blue, yellow, red and green squares of a Rubik’s cube, and they 
will typically look to have those colours even across different lighting 
conditions (for example, yellowish daylight or neutral fluorescent 
light). In such cases, vision ‘discounts the illuminant’—essentially see-
ing through the lighting conditions to extract the underlying colour of 

the surface being depicted. Recent work in experimental psychology 
has shown that such discounting occurs even for higher-level visual 
processes, such as when we ‘see through’ a cloth to discern the shape of 
the object beneath it33 (see also ref. 34). This process was investigated 
using a change-detection task, wherein participants saw a sequence 
of two images depicting cloth-covered objects. Changes were more 
perceptible when the second image showed a different object draped 
similarly (an ‘underlying object change’) than when the second image 
showed a similar object draped differently (a ‘cloth change’), even when 
these changes were equated on certain image metrics. Does a similar 
process arise for style, and can it be studied the same way?

Experiments 5 and 6 adapted this design for style perception, 
essentially asking whether vision engages in an analogous ‘style dis-
counting’ process (Fig. 4). In experiment 5, participants briefly viewed 
an image (for example, a Van-Gogh-styled beach), which then disap-
peared and was replaced by a new image. Participants then had to say 
whether the two images were the same or different from each other. 
Half of trials depicted the same image, and the other half depicted a 
different image. The different-image trials were themselves equally 
split between images depicting the same scene in a different style (for 
example, the same beach but now in the style of Munch; style-change 
trials), or a different scene in the same style (for example, a library in 
the style of Van Gogh’s Starry Night; scene-change trials). Following 
previous work33, both change types were equated in terms of embed-
ding distances in a convolutional neural network (CNN; here, ResNet-18, 
ref. 29), such that the images were equally different from one another 
(from the point of view of the CNN) across the two experimental con-
ditions. Nevertheless, participants performed significantly better at 
scene-change trials than style-change trials (mean difference 16.83%, 
t(86) = 11.30, P < 0.001, d = 1.21, 95% CI 13.87–19.79%), as would be 
expected if vision engages in style discounting.

Experiment 6 replicated this result with more extensive controls 
for image similarity. Although experiment 5 equated the distance of 
ResNet embeddings, it is possible that the change types still differed on 
other lower-level image metrics. Thus, experiment 6 subsampled the 
most similar scene-change pairs and least similar style-change pairs, 
such that multiple image statistics—including mean-squared error of 
pixel changes, structural similarity35 and ResNet embeddings—were 
not only similar but, if anything, would predict the opposite trend 
(because scene-change pairs were more similar to one another on 
average than style-change pairs). Remarkably, participants still per-
formed significantly better on scene-change trials (mean difference 
12.90%, t(88) = 9.44, P < 0.001, d = 1.00, 95% CI 10.18–15.61%). This 
provides especially compelling evidence for style discounting, a new 
phenomenon in which perception sees through the style of an image to 
extract its underlying content, in ways analogous to other discounting 
processes in vision.

Experiments 7–9, style extrapolation
Whereas style tuning and style discounting suggest that the mind 
extracts an image’s style to better perceive its content, we may also 
extract an image’s style for use in mental functions further downstream. 
In a third set of experiments, we explore how style affects memory, by 
asking whether the mind extrapolates styles we have seen to anticipate 
the appearance of completely unseen objects.

These experiments were inspired by semantic priming, the phe-
nomenon whereby semantic processing of one word spreads to other 
words whose meanings are related36. While semantic priming effects 
are often studied as small reaction-time benefits (for example, in lexi-
cal decision tasks), they may also manifest in false memories of words 
one has not actually seen. For example, after reading the words ‘candy’, 
‘taste’ and ‘treat’, participants may misremember having seen the word 
‘sweet’. Might a similar phenomenon arise in the perception of style?

Our next experiments adapted this task to style perception by 
exploring false memories for members of sets of styled objects (Fig. 5). 
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Instead of the synthetic images used in previous experiments, here we 
used naturalistic images of utensils (that is, forks, knives and spoons) 
to ask whether the mind generates representations of new objects in 
a given style after previously seeing examples of other objects in that 
same style (see also ref. 28, which explores transfer of letter identities 
to new typefaces). By extending our approach to naturalistic stimuli 
(that is, beyond the artificial stimuli in experiments 1–6), these experi-
ments also served to test the generality of our approach. The styles of 
cutlery sets—and naturalistic objects more broadly—vary in ways that 
differ from neural style transfer: while artificial style transfer primarily 
applies a textural transformation (and preserves, for example, global 
shape and scene composition), naturally styled objects often vary 
considerably in shape. In part for this reason, stimuli of this sort have 
been the subject of considerable scholarly attention in the fields of 
computer vision and machine learning37–40.

In experiment 7, participants first performed a simple identifi-
cation task in which they saw a series of utensils, one at a time, and 
judged whether they were forks, knives or spoons. Then, participants 
performed a recall task in which they saw an array of images (some 
novel, some shown previously) and had to click the utensils they had 
remembered seeing. Each participant was randomly assigned a ‘recall 
utensil’ (either a fork, knife or spoon) which determined the utensil in 
the recall task (at the start of this experiment and experiment 8, par-
ticipants were explicitly informed that their memory for the utensils 
would be tested; this was not the case for experiment 9). Crucially, there 
were three types of image in the recall task: (1) images that were seen 
previously in the identification task (‘seen’); (2) images that were not 
previously seen (‘unseen’); and (3) images that were not themselves 
previously seen but that appeared in a style that was previously seen 
(for example, a medieval knife, having previously seen a medieval fork 
and spoon; ‘extrapolated’). We suspected that, just as participants who 
see ‘candy’ and ‘taste’ misremember having seen ‘sweet’, participants 

who see a fork and a spoon in a given style would misremember having 
seen the knife in that style—a behaviour that draws on the capacity to 
anticipate what a knife from that style would look like, despite never 
having seen it before.

Indeed, participants falsely remembered seeing the recall utensil 
for ‘extrapolated’ utensils significantly more often than for ‘unseen’ 
utensils (mean difference 29.87%, t(74) = 11.43, P < 0.001, d = 1.32, 95% 
CI 24.66–35.07%). This was not just due to poor memory for all utensils, 
as participants also successfully remembered ‘seen’ utensils at a higher 
rate than extrapolated utensils (mean difference 36.00%, t(74) = 15.48, 
P < 0.001, d = 1.79, 95% CI 31.37–40.63%). This result provides initial 
evidence for style extrapolation: To reliably select extrapolated utensils 
(for example, the medieval knife) more often than unseen utensils sug-
gests that false memories for styled images arise in ways analogous to 
other established memory phenomena. Moreover, it also indicates that 
the mind generalizes the styles it learns to novel instances; to recognize 
an object as a medieval knife, one must have abstracted that style from 
one or more seen examples (here, the medieval fork and spoon) to this 
new instance (see also ref. 28).

An important confound in experiment 7 is image similarity: 
because medieval knives look more similar to medieval forks and 
spoons than they do to other images, false memories for those objects 
could arise from that similarity alone (rather than from an internal 
model of style applied to novel objects). Experiment 8 addressed this 
confound by presenting participants with either one unique or two 
unique examples of each style in the identification task, and compar-
ing performance between these two cases. Participants performed 
the same task as in experiment 7, but here the trials were split as fol-
lows: For half of the styles shown, two unique examples were seen in 
the identification task (for example, a medieval fork and a medieval 
spoon); for the other half of styles shown, one unique example was seen 
twice (for example, two medieval forks). Each set was also split evenly 
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Fig. 4 | Style discounting. In experiments 5 and 6, participants judged whether 
two sequentially appearing images were the same or different. We found that 
changes to the underlying scene (with style held constant, shown in green) 
were more detectable than changes to the style (with the underlying scene 
held constant, shown in blue; experiment 5, N = 87), even when low-level image 

statistics would predict the opposite pattern (experiment 6, N = 89). This 
effect mirrors other discounting effects in vision, demonstrating that visual 
processing can subtract out the effects of style so as to represent the underlying 
scene content. Data are presented as means ± 95% CIs of the difference between 
conditions. All statistical tests are paired, two-sided t-tests; ***P < 0.001.
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across the ‘held-out’ utensil (that is, of the two-example styles, one 
third depicted a fork and a knife, one third depicted a fork and a spoon 
and one third depicted a knife and a spoon). If style extrapolation is 
merely explained by image similarity, then styles containing two unique 
examples should behave similarly to styles containing one unique 
example shown twice, because the presented images would be equally 
similar to the held-out utensil in both cases. However, this is not what 
we observed; instead, there were higher rates of false memories (that 
is, higher rates of generating the held-out utensil) for styles contain-
ing two unique examples than styles containing one unique example 
shown twice (mean difference 5.04%, t(89) = 2.71, P < 0.01, d = 0.29, 
95% CI 1.34–8.73%). Evidently, exposure to different instances of the 
same style aids in extracting common stylistic features and applying 
them to novel cases—as would be expected if style extrapolation goes 
beyond image similarity.

Finally, we explored whether style extrapolation might occur 
implicitly or unintentionally (perhaps as a strategy during encoding) by 
making the recall task a surprise. Whereas experiments 7 and 8 alerted 
participants to the upcoming recall task at the start of the experiment, 
experiment 9 presented the identification task without any further 
context and then surprised participants with the recall task. Even in this 
case, participants extrapolated styles containing two unique examples 

more than styles containing two of the same examples (mean difference 
3.70%, t(91) = 2.43, P = 0.02, d = 0.25, 95% CI 0.68–6.71%). Thus, style 
extrapolation occurs spontaneously; even when there is no independ-
ent pressure to do so, the mind implicitly generates representations of 
unseen objects in the style of previously encountered ones.

Experiment 10, modelling style perception with  
CNN embeddings
Our results thus far suggest that the mind adapts to, sees through and 
extrapolates style. However, we also judge style more explicitly than 
in the above contexts. For example, we may appreciate that a certain 
Van Gogh painting is more stylistically similar to a Monet painting than 
a Pollock painting (and incorporate these judgements into decisions 
about which paintings to hang where in a gallery or collection). How 
systematic and predictable are such judgements, and what is their 
relationship to more basic mechanisms of visual perception?

In a final experiment, participants saw two style-transferred 
images on each trial and simply rated their similarity on a 9-point scale 
(Fig. 6). Each pair of images consisted of one scene type (for example, a 
mountain) depicted in two different styles (for example, Van Gogh and 
Monet). We modelled these judgements by extracting ResNet embed-
dings (that is, the network’s final layer before classification) for each 
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Fig. 5 | Style extrapolation. In experiments 7–9, participants first identified 
utensils, classifying them as forks, knives or spoons; then, they completed a recall 
task in which they selected the utensils they remembered seeing. Experiment 7 
(N = 75) revealed false memories for objects that had not themselves appeared 
earlier if other members of that cutlery set had appeared—suggesting that 
the mind was able to extrapolate the style of seen utensils to anticipate the 
appearance of other objects in that style. Experiment 8 (N = 90) controlled for 
image similarity by presenting either two unique utensils of a given style (for 
example, fork and spoon from one cutlery set), or two of the same utensils 
from that style (for example, two forks from that cutlery set). Even though the 

presented objects and the lures (for example, the knife from that set) were 
now equated across conditions, participants nevertheless had more false 
memories after seeing two unique utensils than two of the same utensils, 
further implicating a process whereby the mind generates representations of 
new objects in the style of previously seen ones. Experiment 9 (N = 92) showed 
that such generation may occur automatically, because the effects arise even 
when the recall task comes as a surprise to participants. Data are presented as 
means ± 95% CIs of the difference between conditions. All statistical tests are 
paired, two-sided t-tests; ***P < 0.001; **P < 0.01; *P < 0.05.
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image in our style-transfer stimulus set and then reducing them from 
512 dimensions to 2 dimensions using t-distributed stochastic neigh-
bour embedding (t-SNE41). This allowed visualization of the embed-
dings, following similar approaches elsewhere in this literature (for 
example, separating human sketches by style or drawing pattern42). 
Even before incorporating human judgements, note that t-SNE creates 
large, well-defined clusters that are naturally separated by style. This 
may be expected given earlier work, including results from Karayev 
et al.32, who demonstrate that ImageNet models implicitly learn fea-
tures that can be used to classify style, as well as demonstrations of the 
salience of image style in neural network models43,44.

More relevant to our research question is how these similarities 
track human judgements. While it is expected that the embeddings of 
style-transferred images should naturally cluster by style rather than 
scene type (given the training objective of style transfer), it is not obvi-
ous that the distance between these embeddings would match human 
judgements in any particularly robust way. However, we found that 
mean t-SNE distance for all image pairs grouped by similarity rating 
(1–9) decreased monotonically (indeed, perfectly so; ρ = −1.0, P < 0.001); 
in other words, images that were rated as less similar by participants 
consistently had more distant t-SNE embeddings (and this relationship 
was stronger for t-SNE embedding distance between images than for 
mean squared error (MSE) in pixel values between images; ρ = −0.85, 
P < 0.01). While there was already good reason to expect most of these 
results, together they (1) dovetail with demonstrations showing that 
artistic style may be salient to computer vision models32,43,44, (2) show 
that these models’ representations of style track with human judge-
ments of similarity across styles and (3) demonstrate that style not only 
drives performance on the implicit tasks explored earlier but also 
grounds explicit similarity judgements. (Note that style transfer models 
may not encompass all aspects of stylistic variation. For example, such 
models capture aspects of texture and colour, but not composition and 
framing. See the ‘Discussion’ for more detail on future directions explor-
ing other models and approaches to style transfer.)

More generally, these results may guide future behavioural exper-
iments on style perception akin to experiments 1–9. For example,  

one could further explore the abstractness of style tuning; would style 
tuning be observed for impressionist-style images broadly, and not 
just Monet or Van Gogh paintings? Our results could offer a helpful 
guide for this experiment by informing the selection of styles that are 
appropriately close together (or far away) in the embedding space. 
In other words, cognitive questions concerning style perception (for 
example, how abstract is style tuning?) can be usefully grounded in the 
sort of computational approach taken here (for example, how close 
do the embeddings of two styles have to be in order to observe style 
tuning for both?).

Discussion
What is the psychological basis of our capacity to perceive style? The 
results reported here explore how well-characterized cognitive mecha-
nisms in which the mind parses ‘content’ from ‘form’ underlie this abil-
ity and leave psychophysical traces of their operation. This approach 
revealed several new phenomena of style perception that share key sig-
natures with these other parsing processes. Experiments 1–4 revealed 
style tuning, whereby observers adapt to the style of scenes, leading to 
increased processing fluency akin to font tuning and speech adapta-
tion. Experiments 5 and 6 demonstrated style discounting, a process in 
which vision ‘sees through’ the style of a scene to discern its underlying 
content. Experiments 7–9 explored downstream effects of style percep-
tion, through style extrapolation—a phenomenon in which perceived 
style is used to mentally render new objects (creating false memories of 
having seen them). Finally, experiment 10 demonstrated that subjective 
impressions of style are captured by computer vision models in ways 
that could ground future behavioural experiments.

Our findings join a growing empirical literature at the inter-
section of visual art, perceptual psychology, and computational 
aesthetics6–17,32,37–40,43,44. While this literature has shed light on ques-
tions related to those we explore here (see also refs. 18–21,28,45–47), 
uncovering the nature of style perception has remained an elusive 
goal—in part owing to the lack of suitable tools to study it (for example, 
methods for generating well-controlled styled images). By combining 
classic psychophysical approaches with recent advances in generative 
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artificial intelligence, our work helps to elucidate this process, showing 
how style perception can arise from core psychological mechanisms 
for parsing the content of an image from its form.

The present work focuses on cases where the distinction between 
style and content seems natural and intuitive. Of course, it is not always 
trivial (or even sensible) to separate style from content in this way. In 
many artistic contexts, style is content in an important sense. And even 
in the design of a home or a tool, stylistic choices may carry functional 
consequences. Nevertheless, the existence of such examples need not 
detract from the cases where style and content separate more cleanly, 
as in the phenomena we explore and investigate here.

These results open the door to further experimental investigations 
of style perception. A natural extension would be to examine style per-
ception in other modalities. For example, just as the same village scene 
may be depicted in different visual styles, so too can the same melody 
or chord progression be realized in different auditory styles. Musical 
style arguably respects the same distinction between ‘content’—the 
underlying melody, perhaps as expressed in sheet music—and ‘form’—
the instruments used to play the melody, the character and emotion 
with which the instruments are played, the musical genre they belong 
to and so on (see, for example, ref. 48). We speculate that musical style 
might engage the same types of parsing processes in the mind, leading 
to the prediction that auditory style perception would share many of 
the signatures we explore here (for example, listeners ‘tuning’ to the 
style of an orchestral melody in ways that improve detection of tempo 
changes or errant notes).

Within the domain of visual style, further advances may be made 
by loosening various constraints on style-transfer approaches to pro-
duce images with more variability. Our experiments used leading 
neural style transfer models26,27 that render a scene in a given style while 
preserving its underlying composition. Thus, ‘style’ in such models 
generally consists of changes in texture, colour and other lower- and 
mid-level image features. However, artistic styles may also diverge in 
even higher-level ways. For example, a different artist painting the same 
scene may choose to vary which objects are present in the first place, 
where they are located, what viewpoint they are seen from and so on. 
Leading style-transfer models do not permit such variation; this is why 
they were an appropriate choice for the controlled psychophysical 
setting of our behavioural experiments, which were designed to vary 
style while holding scene content constant. However, more recent 
approaches to image synthesis (such as diffusion models) could cap-
ture these additional aspects of artistic style (for example, ref. 49), 
opening the door for new questions—but also new methodological chal-
lenges—concerning the perception and representation of artistic style.

More generally, our work here shows how seemingly abstract or 
rarefied questions about human creativity and expression may be 
bound up with more basic psychological capacities–and how quantita-
tive and experimental approaches can complement more qualitative 
or humanistic traditions to shed light on questions of interest to both.

Methods
General methods (all experiments)
Readers can experience all of our experiments, in the same way as our 
participants did, at https://perceptionresearch.org/style. All sample 
sizes, designs and analysis plans were preregistered; these preregistra-
tions, along with the stimuli, experimental code, data and analysis code 
are available at https://osf.io/mb3nh/.

Participants. All participants were adults recruited from the online 
platform Prolific (for a discussion of the reliability of this participant 
pool, see ref. 50). We coded each experiment using Hypertext Markup 
Language (HTML), Cascading Style Sheets (CSS) and JavaScript ( JS) 
and then posted our web experiments on Prolific for participants to 
complete. Experiments 1–4 recruited 50 participants each; experi-
ments 5–10 recruited 100 participants each. Sample sizes were chosen 

to be sufficiently large on the basis of pilot studies we conducted. All 
participants in each experiment were unique; no participant completed 
multiple experiments. Participants received financial compensation 
upon completing the experiment. The experiments were approved by 
the Homewood Institutional Review Board of Johns Hopkins Univer-
sity (HIRB00005762). All participants in these experiments provided 
consent for their participation. In all experiments, participants who 
did not submit a complete dataset were excluded.

Style-transfer stimuli (experiments 1–6 and 10). We created a stimu-
lus set of artificially styled scenes using the style-transfer model from 
ref. 27. We used the model to apply six styles from famous paintings 
(Demuth’s Trees and Barns Bermuda, Van Gogh’s Starry Night, Klimt’s 
The Kiss, Monet’s Water Lilies, Pollock’s Number 1, 1949, and Munch’s The 
Scream) to images of four different scene types (beaches, bedrooms, 
libraries and mountains). We chose these styles because they were 
prominent and even famous, while also still being sufficiently differ-
ent from one another. Each scene type contained 64 images from the 
stimulus set in ref. 30. This resulted in a style-transferred stimulus set 
of 1,536 images; all these images, along with the code needed to run the 
style-transfer model, are available in our data archive.

Utensil stimuli (experiments 7–9). Along with our style-transfer stim-
uli, we created a stimulus set of naturally styled objects, specifically 
sets of cutlery. We gathered images of 30 sets of cutlery from various 
online sources. The sets of cutlery come from a range of styles (for 
example, some depict kids cutlery, some depict plastic cutlery, some 
depict medieval cutlery and so on).

Experiment 1, style tuning
Stimuli and procedure. Participants completed 200 trials of our 
style tuning task. At the start of the experiment, each participant was 
randomly assigned a target scene type (either beaches, bedrooms, 
libraries or mountains); this determined the scene type they had to 
count in each trial. Each trial contained an array of nine images laid 
out horizontally, with the specific scenes randomly chosen (such 
that the target scene type was between 1 and 9; distractor scene types 
were also chosen randomly). Participants had to count how many 
times the target scene appeared in the array and then respond using 
their keyboard.

Half of trials contained scenes of all the same randomly chosen 
style (that is, for each of 100 same-style trials, a random style was 
chosen from our set of 6 styles, and then all 9 images appeared in that 
style). The other half of trials contained scenes of multiple different 
styles, chosen randomly for each image. The order of same-style and 
mixed-style trials was shuffled randomly for each participant. Partici-
pants received feedback at the end of each trial.

This study was preregistered on 31 August 2023 (https://aspre-
dicted.org/kv3v-z8nv.pdf).

Exclusions. We excluded participants who responded correctly on 
less than 30% of trials. This excluded six participants total. Then, we 
excluded trials with response times below 200 ms or above 10,000 ms; 
this excluded 741 of the remaining 8,800 trials.

Results. As reported in the main text, participants were significantly 
faster at enumerating scenes in same-style trials than in mixed-style 
trials (mean difference 289 ms, t(43) = 4.93, P < 0.001, d = 0.74, 95% 
CI 171–407 ms; this and all other t-tests reported here are two-tailed 
dependent-samples tests over participant-level means). This analy-
sis was performed only over trials in which participants responded 
correctly. Participants were also significantly more accurate on 
same-style trials than on mixed-style trials (mean difference 6.74%; 
t(43) = 6.10, P < 0.001, d = 0.92, 95% CI 4.51–8.97%; preregistered as 
a secondary analysis).
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Experiment 2, style tuning for varying array length
Stimuli and procedure. The task in experiment 2 was the same as in 
experiment 1 except as noted below. Instead of all trials presenting nine 
images, here trials presented different numbers of images. The 200 tri-
als were equally split among arrays of 3 images, 5 images, 7 images and 
9 images. This balance was preserved across same- or mixed-style trials; 
in other words, of the 100 same-style trials, 25 contained 3 images, 25 
contained 5 images, 25 contained 7 images and 25 contained 9 images.

This study was preregistered on 10 September 2023 (https:// 
aspredicted.org/fpkz-qpmk.pdf).

Exclusions. We excluded participants who responded correctly on less 
than 40% of trials. Note that this accuracy criterion is higher than in 
experiment 1; this is because the task is easier, as chance performance 
is higher on trials with fewer images. This excluded two participants. 
Two additional participants were excluded because they did not com-
plete the experiment. As before, we excluded trials with response 
times below 200 ms or above 10,000 ms, which resulted in excluding 
241 of 9,200 trials.

Results. Collapsing across all image-array sizes, we observed sig-
nificantly faster response times on same-style trials than mixed-style 
trials (mean difference 123 ms, t(45) = 3.53, P < 0.001, d = 0.52, 95% 
CI 53–193 ms). Accuracy was also higher on same-style trials than 
on mixed-style trials (mean difference 4.33%, t(45) = 4.50, P < 0.001, 
d = 0.66, 95% CI 2.39–6.27%). Finally, we observed either significantly 
or marginally significantly faster response times for three-image 
trials (mean difference 98 ms, t(45) = 2.53, P = 0.02, d = 0.37, 95% CI 
20–176 ms), five-image trials (mean difference 108 ms, t(45) = 1.93, 
P = 0.06, d = 0.28, 95% CI −5 to 221 ms), seven-image trials (mean dif-
ference 197 ms, t(45) = 3.15, P < 0.01, d = 0.46, 95% CI 71–323 ms) and 
nine-image trials (mean difference 89 ms, t(45) = 1.36, P = 0.18, d = 0.20, 
95% CI −42 to 220 ms). Note that the experiment was not powered to 
test these specific subsample differences, and thus these latter analyses 
are purely exploratory.

Experiment 3, style tuning with colour and luminance controls
Stimuli and procedure. This experiment proceeded the same way as 
experiment 1; the only difference was in the stimuli. Whereas experi-
ment 1 presented stimuli that varied in colour and luminance (simply 
using the output of the style-transfer method), experiment 3 presented 
greyscale, luminance-matched versions of those stimuli (created using 
the SHINE toolbox in MATLAB31).

This study was preregistered on 13 September 2023 (https:// 
aspredicted.org/5v4x-rhw2.pdf).

Exclusions. Exclusion criteria here were the same as in experiment 
1: participants were excluded if their accuracy was below 30% (which 
excluded 6 participants), and trials were excluded for response times 
below 200 ms or above 10,000 ms (which excluded 721 of 8,800 trials).

Results. As in experiment 1, participants were significantly faster (mean 
difference 267 ms, t(43) = 5.61, P < 0.001, d = 0.85, 95% CI 171–364 ms) 
and more accurate (mean difference 8.26%, t(43) = 7.37, P < 0.001, 
d = 1.11, 95% CI 6.00–10.53%) on same-style trials than mixed-style trials.

Experiment 4, the time course of style tuning
Stimuli and procedure. The stimuli here were the same as in experi-
ment 1, and, as before, participants were assigned a target scene type at 
the start of their experiment. However, instead of counting the number 
of times the target scene appears in an array of nine images, participants 
used their mouse to click on each of the target scene images. When a 
participant was satisfied and thought they had clicked all the images of 
the target scene type, they could advance to the next trial by pressing 
‘enter’ on their keyboard. At the end of each trial, participants received 

feedback, alerting them of both incorrect clicks (that is, false alarms) 
and incorrect non-clicks (that is, misses).

This study was preregistered on 14 September 2023 (https:// 
aspredicted.org/95g8-cmgv.pdf).

Exclusions. Participants with accuracy below 40% were excluded 
(resulting in four exclusions). Four additional participants were 
excluded for not completing the experiment. Note that we defined 
a ‘correct’ trial as one where the participant clicks on all the correct 
scenes and only those scenes (and, thus, has no false alarms or misses). 
This accuracy criterion was higher than in experiments 1 and 3 because 
the responses were slower and more intentional (that is, participants 
could unclick and double-check their responses). Trials with a response 
time below 200 ms or above 10,000 ms were excluded (resulting in 
1,201 of 8,400 trials being excluded).

Results. Total response time—that is, from the presentation of the 
images until the participant pressed ‘enter’—was faster for same-style 
trials than for mixed-style trials (mean difference 192 ms, t(41) = 5.89, 
P < 0.001, d = 0.91, 95% CI 126–258 ms). Participants were also more 
accurate on same-style trials (mean difference 6.94%, t(41) = 6.93, 
P < 0.001, d = 1.07, 95% CI 4.92–8.96%). Crucially, however, we also ana-
lysed our data by click index to investigate how style tuning evolves over 
time. We fit a linear mixed-effects model predicting response times, 
with a random effect of participant and fixed effects of click index (that 
is, how many images were previously clicked), trial type (same style or 
mixed style) and their interaction. We found a significant interaction 
between click index and trial type (t(711) = 3.25, P < 0.01). As expected, 
the fixed effect of click index was significant, as it takes more time to 
click more images (t(711) = 69.64, P < 0.001), and the fixed effect of 
trial type was not significant, suggesting that such a tuning advantage 
indeed evolves over time (that is, it is not present immediately at the 
onset of a trial; t(711) = 0.63, P = 0.53). (Given that these two parameters 
on their own have no bearing on the question of this experiment, we 
did not preregister their analysis and merely include them for thor-
oughness here.) More importantly, we found a significant correlation 
between click index and same-style advantage on the participant level 
(r(376) = 0.27, P < 0.001, 95% CI 0.17–0.36), such that the same-style 
advantage increased as click index increased.

Experiment 5, style discounting
Stimuli and procedure. We used the luminance-matched stimuli from 
experiment 3 in a same–different task to examine style discounting.  
On each trial, a base image appeared for 850 ms, followed by a blank 
screen for 750 ms, followed by a new image, which stayed visible until 
response. The two images appeared in random locations, and also with 
random rotations for each trial; the rotations were introduced to make the 
task more difficult so that participants would make errors (which are the 
targets of our analyses). Participants had to say whether the two images 
were the same or different (irrespective of rotation; that is, an image and 
its 90°-rotated version are the same image for this purpose). They made 
this response using their keyboard (‘S’ for same, ‘D’ for different).

Participants completed 100 trials of this task. In 50 of the trials, 
the two images were the same, and in 50 of the trials the two images 
were different. Among the 50 trials depicting two different images, 
25 depicted the same scene as the base image, but in a different style 
(style-change trials); and 25 depicted a different scene from the base 
image, but in the same style (scene-change trials). The order of trials 
was randomly shuffled for each participant.

This study was preregistered on 15 November 2023 (https://aspre-
dicted.org/c6b9-4jh8.pdf).

Exclusions. We excluded participants who did not perform accurately 
on at least 75% of trials, resulting in 11 exclusions. Two additional par-
ticipants were excluded for failing to complete the experiment.
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Results. Participants were more accurate on scene-change trials than 
style-change trials (mean difference 16.83%, t(86) = 11.30, P < 0.001, 
d = 1.21, 95% CI 13.87–19.79%). They were also numerically faster on 
scene-change trials, although this trend was not significant (mean 
difference 17 ms, t(86) = 1.45, P = 0.15, d = 0.16, 95% CI −6 to 41 ms). In 
addition, we report an unbiased measure of sensitivity, d′. This revealed 
high sensitivity for scene-change trials over style-change trials (mean 
participant d′ = 1.88, 95% CI 1.75–2.01), confirming our accuracy-based 
metrics. Note that this d′ analysis was not preregistered and, thus, is 
purely exploratory; however, it suggests that our results still hold with 
unbiased measures.

Experiment 6, style discounting with balanced metrics
Stimuli and procedure. Participants performed the same task from 
experiment 5. However, we subsampled our stimulus set to contain 
only the 25 most similar pairs of scene-change images, and the 25 
least similar pairs of style-change images. This resulted in a stimulus 
set where the MSE of the pixel values, structural similarity and ResNet 
embedding distance all rated scene-change pairs as more similar than 
style-change pairs. The image metrics calculated for all relevant pairs of 
images are available in our Open Science Framework (OSF) repository.

This study was preregistered on 20 November 2023 (https:// 
aspredicted.org/43pc-xt3d.pdf).

Exclusions. As in experiment 5, we excluded participants who 
responded correctly on less than 75% of trials, resulting in ten exclu-
sions. One additional participant was excluded for failing to complete 
the experiment.

Results. As before, participants were more accurate on scene-change 
trials (mean difference 12.90%, t(88) = 9.44, P < 0.001, d = 1.00, 95% 
CI 10.18–15.61%). Participants were also faster on scene-change tri-
als (mean difference 55 ms, t(88) = 3.53, P < 0.001, d = 0.37, 95% CI 
24–87 ms). As above, these results were confirmed by an explora-
tory analysis using d′, an unbiased measure (mean participant d′ for 
scene-change versus style-change trials 2.42, 95% CI 2.28–2.56).

Experiment 7, style extrapolation
Stimuli and procedure. The experiments for style extrapolation use 
the utensil stimuli described above.

This experiment consisted of two parts: an identification task 
and a recall task. In the identification task, participants saw images of 
utensils, one at a time, and simply classified them as forks, knives or 
spoons by pressing ‘F’, ‘K’ or ‘S’ on their keyboards. After completing 
the identification task, participants were then given the recall task, 
which consisted of multiple trials each displaying a 3 × 2 grid of utensil 
images. Participants were explicitly told that a recall task would follow 
the identification task. Each trial of the recall task had the same utensil 
types—that is, all forks, all knives or all spoons, randomly decided for 
each participant (we refer to this utensil type as the ‘recall’ utensil). 
Participants were simply instructed to click on the images they had 
remembered seeing in the identification task and leave unclicked any 
images they had not seen.

The images appearing in each of these tasks were chosen very 
intentionally, and as follows (with these choices and parameters not 
revealed to participants). Among the 30 styles in our stimulus set, 10 
were chosen to be left out of the identification task (we refer to these 
as the ‘unseen’ styles). Of the remaining 20 styles, 10 contained two 
instances of the recall utensil in the identification task (‘seen’ styles) 
and 10 contained two examples of the two non-recall utensils in the 
identification task (‘extrapolated’ styles). For example, if the recall 
utensil for a given participant was a knife, then that participant would, 
in their identification task, see: zero images of any kind from styles 1–10; 
20 knives from styles 11–20 (10 knives, each appearing twice); and one 
fork and one spoon each from styles 21–30.

Then, in that participant’s recall task, they would see 30 images 
of knives, one from each style. Of those 30 images of knives, 10 would  
have actually appeared in the identification task (‘seen’); 10 would 
have came from styles that appeared in the identification task as forks 
and knives, even though the knives from that style did not appear 
themselves but the recall utensil itself did not appear in that style 
(‘extrapolated’); and 10 would have been genuinely novel, neither hav-
ing appeared in the identification task themselves, nor any members 
of their style having appeared in the identification task (‘unseen’).

The order of the identification trials, the position of the utensils 
in the recall grid and the order of the recall trials were all randomized.

This study was preregistered on 13 November 2023 (https:// 
aspredicted.org/fpsn-yrdj.pdf).

Exclusions. We excluded participants who responded correctly on less 
than 90% of trials in the identification task, or got less than 66% of trials 
in the recall task correct. Five participants were excluded because of 
their performance in the identification task, and 19 more were excluded 
for their performance in the recall task. One additional participant was 
excluded for failure to complete the experiment.

Results. Participants had a significantly higher false-positive rate for 
extrapolated images than for unseen images (mean difference 29.87%, 
t(74) = 11.43, P < 0.001, d = 1.32, 95% CI 24.66–35.07%). This positive 
response rate was in turn significantly lower than the positive responses 
for the seen images (which in this case, are correct responses; mean dif-
ference 36.00%, t(74) = 15.48, P < 0.001, d = 1.79, 95% CI 31.37–40.63%).

Experiment 8, style extrapolation, equating image similarity
Stimuli and procedure. As in experiment 7, this task contained two 
parts. However, the styles were split differently than in that experiment. 
Here, among the 30 styles, 15 contributed two of the same examples 
in the identification task (for example, two forks) and 15 contributed 
two unique examples (for example, a fork and a knife). Furthermore, 
rather than being tested on just one recall utensil, participants in this 
task were tested on recalling all three utensils. The 15 styles of each kind 
were then equally split by recall utensil: 5 held out the fork, 5 held out 
the knife and 5 held out the spoon. As before, the styles in each condi-
tion were randomly chosen for each participant.

Because of these changes in style, the identification task now 
contained 60 trials (as each of 30 styles contributed two images). Then, 
the recall task consisted of ten trials, each displaying six images in the 
grid. Half the images appeared in the identification task, and half were 
new. As before, the number of new images was randomized in each trial 
between 1 and 5 in a way that summed to 30 across the 10 trials.

As stated in the main text, our prediction was that participants 
would be more likely to misremember having seen a given utensil (for 
example, the medieval knife) if they had previously seen both other 
utensils from that style (for example, the medieval fork and the medi-
eval spoon) than if they had previously seen only one other utensil from 
that set twice (for example, the medieval fork twice). This procedure 
thus equates for image similarity and frequency of exposure to images 
from a given style, ensuring that false memories of the additional 
utensil truly reflect style extrapolation.

This study was preregistered on 18 October 2023 (https:// 
aspredicted.org/p89s-gtkf.pdf).

Exclusions. We excluded participants who scored below 90% on the 
identification task, or below 50% on the recall task. This recall exclusion 
criterion was more lenient than in experiment 8 because this task is 
harder than the previous one (that is, the lures are more similar to the pre-
viously seen utensils). One participant was excluded on the basis of their 
performance in the identification task, and seven more were excluded 
on the basis of their performance in the recall task. Two additional par-
ticipants did not complete the experiment and were thus excluded.

http://www.nature.com/nathumbehav
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Results. Participants had higher rates of false memories for styles 
containing two unique examples than for styles containing two exam-
ples of the same utensil (mean difference 5.04%, t(89) = 2.71, P < 0.01, 
d = 0.29, 95% CI 1.34–8.73%).

Experiment 9, implicit style extrapolation
Stimuli and procedure. This task was exactly the same as experiment 8.  
The only difference was that, whereas in experiment 8 participants were 
told at the start of the experiment (that is, before the identification 
task) that they would later be tested on their memory of the utensils, 
here participants were not alerted of the upcoming recall task, such 
that it came as a surprise.

This study was preregistered on 17 October 2023 (https:// 
aspredicted.org/6ngy-g3xs.pdf).

Exclusions. Exclusions were the same as in experiment 8. Three partici-
pants were excluded because of poor performance in the identification 
task, and three more were excluded because of poor performance in 
the recall task. Two additional participants were excluded because they 
did not complete the experiment.

Results. As in experiment 8, participants had more false positives for 
styles containing two unique examples than for styles containing two 
examples of the same utensil (mean difference 3.70%, t(91) = 2.43, 
P = 0.02, d = 0.25, 95% CI 0.68–6.71%).

Experiment 10, predicting stylistic judgements
Stimuli and procedure. On each trial of this experiment, participants 
saw two images (from our greyscale, luminance-matched style-transfer 
stimuli) and rated how similar they were on a 9-point scale using their 
keyboard. Participants completed 100 such trials; in each trial, the two 
images were chosen randomly such that they depict the same scene 
type (for example, both depict beaches) but in different styles.

This study was preregistered on 24 January 2024 (https://aspre-
dicted.org/m439-g7d5.pdf).

Exclusions. We excluded participants who responded with the 
same number in over 50 trials; this excluded 5 participants. Then, we 
excluded trials with a response time below 200 ms (which excluded 
129 of 9,500 remaining trials).

Embeddings. We computed embeddings for each image in the stimulus 
set as follows. First, we extracted ResNet embeddings for each image 
(that is, the final layer of ResNet classification). These embeddings are 
512-dimensional; we reduced them to 2 dimensions by first transform-
ing the 512 dimensions into 50 dimensions with principal component 
analysis (PCA), then transforming those 50 dimensions into 2 with 
t-SNE41. (The PCA transformation was done because t-SNE is typically 
thought to be unstable above 50 dimensions.) We then computed 
Euclidean distance between images in this two-dimensional embed-
ding space. We also calculated the MSE in pixel values between any two 
images in the dataset for model comparison.

Note that all correlations regarding the human-response data are 
Spearman rank-order correlation tests (and not Pearson’s correlation 
tests) because we are concerned with monotonicity and not linearity. 
Furthermore, we make no assumptions about the distribution of the 
variables and, thus, prefer the non-parametric test. We found that the 
mean t-SNE distance had a significant monotonic relationship with 
judged similarity (ρ = −1.0). Meanwhile, the rank-order correlation with 
MSE was weaker (ρ = −0.85). We also computed the mean response and 
distances for each pair of styles (of which there are 15); this relationship 
was ρ = −0.46 for t-SNE distances and ρ = −0.37 for MSE.

Data availability
All data and materials are available via OSF at https://osf.io/mb3nh/.

Code availability
All code is available via OSF at https://osf.io/mb3nh/.
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