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Abstract: 
 
Among the most significant modes of human creative expression is style: the capacity to 
represent objects, events, and scenes (e.g., lilies dotting a pond) in some distinctive manner (e.g., 
Monet’s broken brushstrokes and blended colors). Diverse research traditions analyze the social, 
political, and aesthetic significance of stylistic representation. But what are the cognitive and 
computational foundations of this capacity? Here, we characterize style perception as a process 
that “parses” form from content, and adapt classic psychophysical paradigms to discover 
multiple new phenomena of style perception. Using both naturalistic images and synthetic 
stimuli, ten experiments reveal perceptual ‘tuning’ to stylistic information, representational 
constancy over stylistic variation, and mental rendering of novel styled objects. Moreover, an 
object recognition model further grounds style perception by capturing human judgments of 
image similarity over different styles. Together, this work illuminates the psychological 
foundations of stylistic perception, and opens the door to further investigation of styled media. 
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Main Text 
 
Introduction 
 
When looking at a painting, such as Van Gogh’s Starry Night (Figure 1A), what do we see? 
Certainly we see the painting’s subject — a French village beneath a night sky, viewed from the 
window of an elevated monastery. Equally salient, though, is the painting’s style — its dark 
palette of blues and yellows, whirl of spiraling textures, and dreamlike aura. In other words, the 
scene is portrayed in a certain manner, which is as much a part of the painting as the scene itself. 
 
A distinctive aspect of style is that it can vary independently of content. For example, the same 
village scene might look entirely different if painted by a realist aiming to preserve naturalistic 
details, and different still if painted by an abstract expressionist wishing to convey emotion or 
inner experience. This distinction also arises outside of art galleries and museums, as when we 
appreciate a piece of clothing or furniture, an unusual set of cutlery, or a row of homes in a 
neighborhood. For example, a fork in a cutlery set is likely to have tines and a handle — but its 
shape, finish, and ornamentation may be subject to stylistic variation. Similarly, a house 
generally requires a door, roof, windows, and space for inhabitants — but the size, layout, and 
appearance of these elements may differ in a Victorian home as compared to a cottage or ranch.  
 
The ubiquity and salience of style have generated longstanding scholarly interest in a variety of 
research traditions, including sociology (1, 2), history (3), and of course art theory (4, 5). But 
how does the mind separate style from content in the first place? Surprisingly, little is known 
about the psychological basis of visual style perception. Of course, there is a rich psychological 
literature on visual aesthetics (6-8), which has explored the patterns humans prefer (9-13), to 
what extent aesthetic preferences reflect stable traits of individuals (14), and which patterns of 
neural activity are associated with aesthetic experiences (15-17). However, a psychologically 
grounded account of visual style itself has been elusive (cf. 18-21). Thus, a fundamental question 
remains unanswered (and even unasked): What is the nature of stylistic perception, what 
psychological mechanisms does it draw upon, and what are its psychophysical signatures? 
 
Here, we address these questions by drawing on methods and insights from both classic 
psychophysical studies and recent advances in generative artificial intelligence. A long tradition 
in experimental psychology explores how human perception ‘parses’ the content of a stimulus 
from its context or conditions of presentation — as when we achieve color constancy over 
different illumination conditions (22, 23), adapt to accented speech (24), or extract letter 
identities from different typefaces (25). More recently, modern machine-learning technologies 
have enabled the synthesis of stylized images, whereby a model can extract aspects of artistic 
style from one image (e.g., Starry Night) and then flexibly apply them to any other image (e.g., 
ordinary natural scenes) — a technique known as ‘style transfer’ (26, 27; Figure 1B). For 
example, this process can create novel images of mountains, beaches, bedrooms, and libraries in 
the style of Starry Night, or indeed any other painting (Figure 1C).  
 
The present work combines these approaches to investigate the cognitive mechanisms underlying 
style perception. We conceive of style perception as akin to the well-characterized parsing 
processes mentioned above (for a similar approach outside the context of artistic style, see 28), 
and then explore those processes using newly available style-transfer techniques (as well as 
naturally occurring styled images, such as styled sets of cutlery). Framing style perception as an 
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instance of the mind parsing content from form opens the door to adapting established 
psychophysical paradigms to the study of artistic style. And using style-transfer techniques 
allows for the generation of a large imageset that varies mostly or only in style (while preserving 
underlying content, composition, etc.) in ways that would be difficult or impossible to achieve 
with purely naturalistic images. 
 

 

Figure 1. Extracting and applying artistic style. (A) Starry Night by Vincent Van Gogh. Readers are invited to 
notice not only the content of the image (a French village beneath a night sky), but also its style, including its 
palette, swirling textures, and dreamlike aura. (B) Schematic depiction of ‘style transfer’ (26, 27), a process that 
analyzes a ‘style image’ s to infer an embedding vector , which is then transferred to a ‘content image’ c. This 𝑆

→

results in an image, x, which depicts the content image in the given style. In generating this image, the network is 
trained to minimize loss in both style (i.e., the style difference between x and s) and content (i.e., the content 
difference between x and c), here defined by VGG embedding vector distances. (C) Many of our experiments exploit 
this process to study the perception of style, by generating natural scenes (mountains, libraries, bedrooms, beaches; 
29) in the styles of famous paintings (e.g., Van Gogh’s Starry Night, Monet’s Water Lilies, Klimt’s The Kiss, etc.) 
and placing them in adaptations of classic psychophysical paradigms.  
 
Here, in 10 pre-registered experiments, this approach reveals multiple new phenomena of style 
perception (Figure 2). These results both (a) constitute new discoveries in their own right, and 
(b) testify to the promise of ‘parsing’ as a working model for the study of style perception.  
Finally, we show that a computer-vision model trained on object recognition (ResNet-18, 30) 
predicts subjective impressions of similarity across styles. Together, this theoretical framework 
and empirical results help to illuminate the cognitive and computational basis of style perception. 
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Figure 2. Adapting psychophysical paradigms to study artistic style. (Top) In font tuning, readers become more 
fluent and accurate after adjusting to the typeface of text; the present experiments adapt this paradigm to introduce 
style tuning, whereby target detection improves over time when artistic style is held constant. (Middle) A core visual 
process is discounting the illuminant, enabling perceivers to see the same surface colors across different illumination 
conditions. Here, we explore an analogous process—style discounting—enabling perceivers to see the same scene 
content across different artistic styles. A change-detection task tests whether scene changes are more easily detected 
than style changes, even when the two change types are equated for image similarity. (Bottom) In semantic priming, 
salient properties of items one has encountered can create false memories in which one internally generates 
representations of items one has not encountered (e.g., misremembering ‘sweet’ after encountering ‘candy’, ‘taste’, 
and ‘treat’). The present work reveals a similar pattern in style perception: After seeing a spoon and fork from a 
cutlery set with a given style, the mind may generate a representation of the knife from that set, despite never having 
encountered it before. Such style extrapolation implies that the mind integrates the style of items one has seen with 
other background knowledge to infer the likely appearance of unseen objects. 
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Results 
 
Experiments 1–4: Style tuning 
 
Our first set of experiments was inspired by font tuning, whereby observers adapt to typefaces in 
ways that aid reading fluency and letter recognition (25). In a typical font tuning paradigm, 
subjects see a passage of text in either a single typeface or multiple typefaces, and are tasked 
with making judgments about the presented text (e.g., counting how many tokens are non-words 
as opposed to words). The key finding is that text appearing in a single typeface is more easily 
read than text appearing in multiple typefaces, even if each typeface is familiar and otherwise 
readable on its own — suggesting a tuning process whereby perception extracts (and then adapts 
to) the font in which the text is rendered. However, letters and typefaces constitute a fairly 
circumscribed case, due to relatively limited dimensions of typeface variation and a constrained 
set of underlying contents (i.e., the letters of the alphabet). Might a similar phenomenon arise in 
the more complex and open-ended context of artistic style? 
 
Experiment 1 adapted the font-tuning paradigm to visual style (Figure 3). Using the style transfer 
model described in Ghiasi et al. (27, which adapts a model proposed in 26), we generated a 
stimulus set consisting of natural images of scenes (e.g., mountains and libraries; 29) rendered in 
the style of famous paintings (e.g., Van Gogh’s Starry Night, Monet’s Water Lilies, etc.). We then 
designed a ‘style tuning’ task using these images. On each trial, subjects viewed a row of images 
(analogous to a sentence in font tuning) and simply had to count how many images depicted 
mountains (or one of the other scene types, randomly assigned to each subject). Crucially, in half 
of trials, the images appeared in a single style; in the other half of trials, the images appeared in 
multiple styles. (Interested readers may view all tasks, along with a repository containing all 
pre-registrations, data, and analyses, at https://perceptionresearch.org/style). We predicted that, 
just as same-typeface sentences are easier to read than mixed-typeface sentences (resulting in 
faster reading times), same-style image arrays would be more easily processed than mixed-style 
image arrays (resulting in faster scene-identification times) — reflecting the visual system’s 
ability to learn a mapping between styles and scene identities.  
 
Indeed, subjects were significantly faster to enumerate scenes in same-style trials (M = 5418ms) 
than in mixed-style trials (M = 5707ms, difference = 289ms; t(43) = 4.93, p < 0.001, d = 0.74, 
95% CI = [171ms, 407ms]; this and all other t-tests reported here are two-tailed 
dependent-samples tests over subject-level means). This speed advantage did not come at the 
expense of accuracy, which was also higher on same-style trials (M = 72.03%) than on 
mixed-style trials (M = 65.29%, difference = 6.74%; t(43) = 6.10, p < 0.001, d = 0.92, 95% CI = 
[4.51%, 8.97%]; pre-registered as a secondary analysis for this experiment). Thus, just as 
perception adapts to the typeface of text or even the accent of a speaker, it also adapts to an 
image’s style — a novel phenomenon we refer to as ‘style tuning’. 
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Figure 3. Style tuning. Experiments 1–4 adapted font tuning paradigms by asking subjects to enumerate a target 
scene type (e.g., mountains) within an array of styled images. Half of the time, all of the images appeared in the 
same style (e.g., as seen in the green outlines above); the other half of the time, the images appeared in a mix of 
styles (e.g., as seen in the blue outlines above). Subjects were significantly faster and more accurate on same-style 
arrays than mixed-style arrays, not only on the level of same-style vs. mixed-style but also on the style- and 
subject-level (Experiment 1, N = 44). This effect arose for arrays of as few as three images (Experiment 2, N = 46), 
survived controls for low-level image properties (Experiment 3, N = 44), and accumulated over time (Experiment 4, 
N = 42). Data are presented as means +/- 95% confidence intervals of the difference between conditions. All 
statistical tests are paired, two-sided t-tests; *** = p < .001. 
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Experiment 2 varied the number of images in the arrays (3, 5, 7, or 9) to ask how quickly the 
mind adapts to style. Might these effects arise with very few examples? Indeed, we found that 
style tuning occurred both across the full sample (i.e., at the same-style vs. mixed style level; 
mean difference = 123ms; t(45) = 3.53, p < 0.001, d = 0.52, 95% CI = [53ms, 193ms]) and at 
each subsample (three-image arrays: 98ms; five-image arrays: 108ms; seven-image arrays: 
197ms; nine-image arrays: 89ms). Thus, style tuning occurs with as few as 3 examples. The 
rapid nature of style tuning continues to mirror font tuning, which arises not just for words in a 
longer paragraph but even for individual letters in a short string (25). 
 
Experiment 3 asked whether low-level image differences may be driving style tuning effects. 
Notice, for example, that Van-Gogh-styled scenes tend to be blue and yellow, while Munch-style 
scenes tend to be reddish, and that the images vary along other dimensions as well (e.g., 
luminance); perhaps, then, our results are driven by the difficulty of jumping from a blue scene 
to a red one, or from a dark scene to a bright one. To control for such factors, we repeated 
Experiment 1 with grayscale, luminance-matched versions of our style-transferred stimuli 
(created using the SHINE toolbox in MATLAB; 31). Previous work shows that neural networks 
trained to classify style do so in ways that go beyond the color distributions of the images (32), 
implying that style perception might persist even without these features. Indeed, we found that 
style tuning survives these low-level controls: Subjects in Experiment 3 were still faster (mean 
difference = 267ms, t(43) = 5.61, p < 0.001, d = 0.85, 95% CI = [171ms, 364ms]) and more 
accurate (mean difference = 8.26%, t(43) = 7.37, p < 0.001, d = 1.11, 95% CI = [6.00%, 
10.53%]) on same-style trials than mixed-style trials. 
 
Finally, Experiment 4 explored the timecourse of style tuning. Instead of enumerating the 
mountain scenes by entering a single response at the end of a trial, subjects in this experiment 
clicked on each target image with their cursor, thereby providing multiple responses to analyze in 
each trial. We discovered that tuning accumulates over the course of a trial: The further into an 
image array, the larger the same-style advantage (r(376) = 0.27, p < 0.001, 95% CI = [0.17, 
0.36]). To further examine this pattern, we fit a linear mixed-effects model that predicts response 
times, with a random effect of subject and fixed effects of click index (i.e., how many images 
were previously clicked), trial type (same-style or mixed-style), and their interaction. We 
hypothesized that the interaction of click index and trial type would significantly predict 
response times, as expected if the same-style advantage accumulates over time; indeed, this 
interaction was significant (t(711) = 3.25, p < 0.01). As before, subjects were also faster at 
same-style trials than mixed-style trials (mean difference = 192ms, t(41) = 5.89, p < 0.001, d = 
0.91, 95% CI = [126ms, 258ms]). Together, these results demonstrate that style tuning exists, 
onsets rapidly, survives low-level controls, and accumulates over time. 
 
Experiments 5–6: Style discounting 
 
As noted earlier, our approach is to conceive of style perception as a process that parses an image 
into two components: The content being portrayed, and the manner in which it is portrayed. 
Perhaps the most foundational example of such a process in visual perception is color constancy 
— the ability to perceive the ‘same’ reflectance properties under different conditions of 
illumination (22, 23). For example, we can see the blue, yellow, red and green squares of a 
Rubik’s cube, and they will typically look to have those colors even across different lighting 
conditions (e.g., yellowish daylight or neutral fluorescent light). In such cases, vision ‘discounts 
the illuminant’ — essentially seeing through the lighting conditions to extract the underlying 
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color of the surface being depicted. Recent work in experimental psychology has shown that 
such discounting occurs even for higher-level visual processes, such as when we ‘see through’ a 
cloth to discern the shape of the object beneath it (33; see also 34). This process was investigated 
using a change-detection task, wherein subjects saw a sequence of two images depicting 
cloth-covered objects. Changes were more perceptible when the second image showed a different 
object draped similarly (an ‘underlying object change’) than when the second image showed a 
similar object draped differently (a ‘cloth change’), even when these changes were equated on 
certain image metrics. Does a similar process arise for style, and can it be studied the same way? 
 

 
Figure 4. Style discounting. In Experiments 5–6, subjects judged whether two sequentially appearing images were 
the same or different. We found that changes to the underlying scene (with style held constant, shown in green) were 
more detectable than changes to the style (with the underlying scene held constant, shown in blue; Experiment 5, N 
= 87), even when low-level image statistics would predict the opposite pattern (Experiment 6; N = 89). This effect 
mirrors other discounting effects in vision, demonstrating that visual processing can subtract out the effects of style 
so as to represent the underlying scene content. Data are presented as means +/- 95% confidence intervals of the 
difference between conditions. All statistical tests are paired, two-sided t-tests; *** = p < .001 in paired, two-sided 
t-test. 
 
Experiments 5–6 adapted this design for style perception, essentially asking whether vision 
engages in an analogous ‘style discounting’ process (Figure 4). In Experiment 5, subjects briefly 
viewed an image (e.g., a Van-Gogh-styled beach), which then disappeared and was replaced by a 
new image. Subjects then had to say whether the two images were the same or different from 
each other. Half of trials depicted the same image, and the other half depicted a different image. 
The different-image trials were themselves equally split between images depicting the same 
scene in a different style (e.g., the same beach but now in the style of Munch; style-change 
trials), or a different scene in the same style (e.g., a library in the style of Van Gogh’s Starry 
Night; scene-change trials). Following previous work (33), both change types were equated in 
terms of embedding distances in a Convolutional Neural Network (here, ResNet-18; 30), such 
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that the images were equally different from one another (from the point-of-view of the CNN) 
across the two experimental conditions. Nevertheless, subjects performed significantly better at 
scene-change trials than style-change trials (mean difference = 16.83%, t(86) = 11.30, p < 0.001, 
d = 1.21, 95% CI = [13.87%, 19.79%]), as would be expected if vision engages in style 
discounting. 
 
Experiment 6 replicated this result with more extensive controls for image similarity. Although 
Experiment 5 equated the distance of ResNet embeddings, it is possible that the change types 
still differed on other lower-level image metrics. Thus, Experiment 6 subsampled the most 
similar scene-change pairs and least similar style-change pairs, such that multiple image statistics 
— including mean-squared error of pixel changes, structural similarity (35), and ResNet 
embeddings — were not only similar but if anything would predict the opposite trend (because 
scene-change pairs were more similar to one another on average than style-change pairs). 
Remarkably, subjects still performed significantly better on scene-change trials (mean difference 
= 12.90%, t(88) = 9.44, p < 0.001, d = 1.00, 95% CI = [10.18%, 15.61%]). This provides 
especially compelling evidence for style discounting, a new phenomenon in which perception 
sees through the style of an image to extract its underlying content, in ways analogous to other 
discounting processes in vision. 
 
Experiments 7–9: Style extrapolation 
 
Whereas ‘style tuning’ and ‘style discounting’ suggest that the mind extracts an image’s style to 
better perceive its content, we may also extract an image’s style for use in mental functions 
further downstream. In a third set of experiments, we explore how style affects memory, by 
asking whether the mind extrapolates styles we have seen to anticipate the appearance of 
completely unseen objects.  
 
These experiments were inspired by semantic priming, the phenomenon whereby semantic 
processing of one word spreads to other words whose meanings are related (36). While semantic 
priming effects are often studied as small reaction-time benefits (e.g., in lexical decision tasks), 
they may also manifest in false memories of words one has not actually seen. For example, after 
reading the words ‘candy’, ‘taste’, and ‘treat’, subjects may misremember having seen the word 
‘sweet’. Might a similar phenomenon arise in the perception of style?  
 
Our next experiments adapted this task to style perception by exploring false memories for 
members of sets of styled objects (Figure 5). Instead of the synthetic images used in previous 
experiments, here we used naturalistic images of utensils (i.e., forks, knives, and spoons) to ask 
whether the mind generates representations of new objects in a given style after previously 
seeing examples of other objects in that same style (see also 28, who explore transfer of letter 
identities to new typefaces). By extending our approach to naturalistic stimuli (i.e., beyond the 
artificial stimuli in Experiments 1-6), these experiments also served to test the generality of our 
approach. The styles of cutlery sets — and naturalistic objects more broadly — vary in ways that 
differ from neural style transfer: While artificial style transfer primarily applies a textural 
transformation (and preserves, for example, global shape and scene composition), naturally 
styled objects often vary considerably in shape. In part for this reason, stimuli of this sort have 
been the subject of considerable scholarly attention in the fields of computer vision and machine 
learning (37–40).  
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In Experiment 7, subjects first performed a simple identification task in which they saw a series 
of utensils, one at a time, and judged whether they were forks, knives, or spoons. Then, subjects 
performed a recall task in which they saw an array of images (some novel, some shown 
previously) and had to click the utensils they had remembered seeing. Each subject was 
randomly assigned a ‘recall utensil’ (either a fork, knife, or spoon) which determined the utensil 
in the recall task. (At the start of this experiment and Experiment 8, subjects were explicitly 
informed that their memory for the utensils would be tested; this was not the case for Experiment 
9.) Crucially, there were three types of images in the recall task: (1) Images that were seen 
previously in the identification task (‘seen’); (2) images that were not previously seen (‘unseen’); 
(3) images that were not themselves previously seen but that appeared in a style that was 
previously seen (e.g., a medieval knife, having previously seen a medieval fork and spoon; 
‘extrapolated’). We suspected that, just as subjects who see ‘candy’ and ‘taste’ misremember 
having seen ‘sweet’, subjects who see a fork and a spoon in a given style would misremember 
having seen the knife in that style — a behavior that draws on the capacity to anticipate what a 
knife from that style would look like, despite never having seen it before.  
 
Indeed, subjects falsely remembered seeing the recall utensil for ‘extrapolated’ utensils 
significantly more often than for ‘unseen’ utensils (mean difference = 29.87%, t(74) = 11.43, p < 
0.001, d = 1.32, 95% CI = [24.66%, 35.07%]). This was not just due to poor memory for all 
utensils, as subjects also successfully remembered ‘seen’ utensils at a higher rate than 
‘extrapolated’ utensils (mean difference = 36.00%, t(74) = 15.48, p < 0.001, d = 1.79, 95% CI = 
[31.37%, 40.63%]). This result provides initial evidence for style extrapolation: To reliably select 
extrapolated utensils (e.g., the medieval knife) more often than unseen utensils suggests that false 
memories for styled images arise in ways analogous to other established memory phenomena. 
Moreover, it also indicates that the mind generalizes the styles it learns to novel instances; in 
order to recognize an object as a medieval knife, one must have abstracted that style from one or 
more seen examples (here, the medieval fork and spoon) to this new instance (see also 28). 
 
An important confound in Experiment 7 is image similarity: Because medieval knives look more 
similar to medieval forks and spoons than they do to other images, false memories for those 
objects could arise from that similarity alone (rather than from an internal model of style applied 
to novel objects). Experiment 8 addressed this confound by presenting subjects with either one 
unique or two unique examples of each style in the identification task, and comparing 
performance between these two cases. Subjects performed the same task as in Experiment 7, but 
here the trials were split as follows: For half of the styles shown, two unique examples were seen 
in the identification task (e.g., a medieval fork and a medieval spoon); for the other half of styles 
shown, one unique example was seen twice (e.g., two medieval forks). Each set was also split 
evenly across the ‘held out’ utensil (i.e., of the two-example styles, one third depicted a fork and 
a knife, one third depicted a fork and a spoon, and one third depicted a knife and a spoon). If 
style extrapolation is merely explained by image similarity, then styles containing two unique 
examples should behave similarly to styles containing one unique example shown twice, because 
the presented images would be equally similar to the held-out utensil in both cases. However, 
this is not what we observed; instead, there were higher rates of false memories (i.e., higher rates 
of generating the held out utensil) for styles containing two unique examples than styles 
containing one unique example shown twice (mean difference = 5.04%, t(89) = 2.71, p < 0.01, d 
= 0.29, 95% CI = [1.34%, 8.73%]). Evidently, exposure to different instances of the same style 
aids in extracting common stylistic features and applying them to novel cases — as would be 
expected if style extrapolation goes beyond image similarity.  
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Figure 5. Style extrapolation. In Experiments 7–9, subjects first identified utensils, classifying them as forks, 
knives, or spoons; then, they completed a recall task in which they selected the utensils they remembered seeing. 
Experiment 7 (N = 75) revealed false memories for objects that hadn’t themselves appeared earlier if other members 
of that cutlery set had appeared — suggesting that the mind was able to extrapolate the style of seen utensils to 
anticipate the appearance of other objects in that style. Experiment 8 (N = 90) controlled for image similarity by 
presenting either two unique utensils of a given style (e.g., fork and spoon from one cutlery set), or two of the same 
utensils from that style (e.g., two forks from that cutlery set). Even though the presented objects and the lures (e.g., 
the knife from that set) were now equated across conditions, subjects nevertheless had more false memories after 
seeing two unique utensils than two of the same utensils, further implicating a process whereby the mind generates 
representations of new objects in the style of previously seen ones. Experiment 9 (N = 92) showed that such 
generation may occur automatically, since the effects arise even when the recall task comes as a surprise to 
participants. Data are presented as means +/- 95% confidence intervals of the difference between conditions. All 
statistical tests are paired, two-sided t-tests; *** = p < .001; ** = p < .01; * = p < .05. 
 
Finally, we explored whether style extrapolation might occur implicitly or unintentionally 
(perhaps as a strategy during encoding) by making the recall task a surprise. Whereas 
Experiments 7 and 8 alerted subjects to the upcoming recall task at the start of the experiment, 
Experiment 9 presented the identification task without any further context, and then surprised 
subjects with the recall task. Even in this case, participants extrapolated styles containing two 
unique examples more than styles containing two of the same examples (mean difference = 
3.70%, t(91) = 2.43, p = 0.02, d = 0.25, 95% CI = [0.68%, 6.71%]). Thus, style extrapolation 
occurs spontaneously; even when there is no independent pressure to do so, the mind implicitly 
generates representations of unseen objects in the style of previously encountered ones. 
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Experiment 10: Modeling style perception with CNN embeddings 
 
Our results thus far suggest that the mind adapts to, sees through, and extrapolates style. 
However, we also judge style more explicitly than in the above contexts. For example, we may 
appreciate that a certain Van Gogh painting is more stylistically similar to a Monet painting than 
a Pollock painting (and incorporate these judgments into decisions about which paintings to hang 
where in a gallery or collection). How systematic and predictable are such judgments, and what 
is their relationship to more basic mechanisms of visual perception? 
 
In a final experiment, subjects saw two style-transferred images on each trial and simply rated 
their similarity on a 9-point scale (Figure 6). Each pair of images consisted of one scene type 
(e.g., a mountain) depicted in two different styles (e.g., Van Goh and Monet). We modeled these 
judgments by extracting ResNet embeddings (i.e., the network’s final layer before classification) 
for each image in our style-transfer stimulus set and then reducing them from 512 dimensions to 
2 dimensions using t-distributed Stochastic Neighbor Embedding (t-SNE; 41). This allowed for 
visualization of the embeddings, following similar approaches elsewhere in this literature (e.g., 
separating human sketches by style or drawing pattern; 42). Even before incorporating human 
judgments, note that t-SNE creates large, well-defined clusters that are naturally separated by 
style. This may be expected given earlier work, including results from Karayev et al. (32), who 
demonstrate that ImageNet models implicitly learn features that can be used to classify style, as 
well as demonstrations of the salience of image style in neural network models (43, 44). 
 

More relevant to our research question is how these similarities track human judgments. While it 
is expected that the embeddings of style-transferred images should naturally cluster by style 
rather than scene type (given the training objective of style transfer), it is not obvious that the 
distance between these embeddings would match human judgments in any particularly robust 
way. However, we found that mean t-SNE distance for all image pairs grouped by similarity 
rating (1 to 9) decreased monotonically (indeed, perfectly so;  = -1.0, p < 0.001); in other ρ
words, images that were rated as less similar by subjects consistently had more distant t-SNE 
embeddings. (And this relationship was stronger for t-SNE embedding distance between images 
than for mean squared error in pixel values between images;  = -0.85, p < .01). While there was ρ
already good reason to expect most of these results, together they (a) dovetail with 
demonstrations showing that artistic style may be salient to computer vision models (32, 43, 44), 
(b) show that these models’ representations of style track with human judgments of similarity 
across styles, and (c) demonstrate that style not only drives performance on the implicit tasks 
explored earlier but also grounds explicit similarity judgments. (Note that style transfer models 
may not encompass all aspects of stylistic variation. For example, such models capture aspects of 
texture and color, but not composition and framing. See our General Discussion for more detail 
on future directions exploring other models and approaches to style transfer.) 
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Figure 6. Modeling style perception with CNN embeddings. In Experiment 10 (N = 95), subjects rated the 
similarity of pairs of styled images. We extracted ResNet-18 embeddings for each image, which we then reduced to 
2 dimensions using t-SNE. Notice that the clusters produced by the embeddings are naturally grouped by style rather 
than scene type. These embeddings also map on to human judgments; similarity judgments decrease monotonically 
as t-SNE distance between the judged images increases, both for each response and for each style pair. Data are 
presented as means +/- 95% confidence intervals for each group. 
 
More generally, these results may guide future behavioral experiments on style perception akin 
to Experiments 1–9. For example, one could further explore the abstractness of style tuning; 
would style tuning be observed for impressionist-style images broadly, and not just Monet or Van 
Gogh paintings? Our results could offer a helpful guide for this experiment by informing the 
selection of styles that are appropriately close together (or far away) in the embedding space. In 
other words, cognitive questions concerning style perception (e.g., how abstract is style tuning?) 
can be usefully grounded in the sort of computational approach taken here (e.g., how close do the 
embeddings of two styles have to be in order to observe style tuning for both?). 
 
Discussion 
 
What is the psychological basis of our capacity to perceive style? The results reported here 
explore how well-characterized cognitive mechanisms in which the mind parses ‘content’ from 
‘form’ underlie this ability and leave psychophysical traces of their operation. This approach 
revealed several new phenomena of style perception that share key signatures with these other 
parsing processes. Experiments 1–4 revealed style tuning, whereby observers adapt to the style 
of scenes, leading to increased processing fluency akin to font tuning and speech adaptation. 
Experiments 5–6 demonstrated style discounting, a process in which vision ‘sees through’ the 
style of a scene to discern its underlying content. Experiments 7–9 explored downstream effects 
of style perception, through style extrapolation — a phenomenon in which perceived style is 
used to mentally render new objects (creating false memories of having seen them). Finally, 
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Experiment 10 demonstrated that subjective impressions of style are captured by computer vision 
models in ways that could ground future behavioral experiments. 
 
Our findings join a growing empirical literature at the intersection of visual art, perceptual 
psychology, and computational aesthetics (6-17, 32, 37-40, 43, 44). While this literature has shed 
light on questions related to those we explore here (see also 18-21, 28, 45-47), uncovering the 
nature of style perception has remained an elusive goal — in part owing to the lack of suitable 
tools to study it (e.g., methods for generating well-controlled styled images). By combining 
classic psychophysical approaches with recent advances in generative artificial intelligence, our 
work helps to elucidate this process, showing how style perception can arise from core 
psychological mechanisms for parsing the content of an image from its form. 
 
The present work focuses on cases where the distinction between style and content seems natural 
and intuitive. Of course, it is not always trivial (or even sensible) to separate style from content 
in this way: In many artistic contexts, style is content in an important sense. And even in the 
design of a home or a tool, stylistic choices may carry functional consequences. Nevertheless, 
the existence of such examples need not detract from the cases where style and content separate 
more cleanly, as in the phenomena we explore and investigate here. 
 
These results open the door to further experimental investigations of style perception. A natural 
extension would be to examine style perception in other modalities. For example, just as the 
same village scene may be depicted in different visual styles, so too can the same melody or 
chord progression be realized in different auditory styles. Musical style arguably respects the 
same distinction between ‘content’ — the underlying melody, perhaps as expressed in sheet 
music — and ‘form’ — the instruments used to play the melody, the character and emotion with 
which the instruments are played, the musical genre they belong to, and so on (see, for example, 
48). We speculate that musical style might engage the same types of parsing processes in the 
mind, leading to the prediction that auditory style perception would share many of the signatures 
we explore here (e.g., listeners ‘tuning’ to the style of an orchestral melody in ways that improve 
detection of tempo changes or errant notes).  
 
Within the domain of visual style, further advances may be made by loosening various 
constraints on style-transfer approaches to produce images with more variability. Our 
experiments employed leading neural style transfer models (26, 27) that render a scene in a given 
style while preserving its underlying composition. Thus, “style” in such models generally 
consists of changes in texture, color, and other lower- and mid-level image features. However, 
artistic styles may also diverge in even higher-level ways. For example, a different artist painting 
the same scene may choose to vary which objects are present in the first place, where they are 
located, what viewpoint they are seen from, and so on. Leading style-transfer models do not 
permit such variation; this is why they were an appropriate choice for the controlled 
psychophysical setting of our behavioral experiments, which were designed to vary style while 
holding scene content constant. However, more recent approaches to image synthesis (such as 
diffusion models) could capture these additional aspects of artistic style (e.g., 49), opening the 
door for new questions — but also new methodological challenges — concerning the perception 
and representation of artistic style.  
 
More generally, our work here shows how seemingly abstract or rarefied questions about human 
creativity and expression may be bound up with more basic psychological capacities — and how 
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quantitative and experimental approaches can complement more qualitative or humanistic 
traditions to shed light on questions of interest to both.  
 
Methods 
 
General Methods (All Experiments) 
 
Readers can experience all of our experiments, in the same way as our participants did, at 
https://perceptionresearch.org/style. All sample sizes, designs, and analysis plans were 
pre-registered; these pre-registrations, along with the stimuli, experimental code, data and 
analysis code are available at https://osf.io/mb3nh/. 
 
Subjects. All subjects were adults recruited from the online platform Prolific (for a discussion of 
the reliability of this subject pool, see 50). We coded each experiment using Hypertext Markup 
Language (HTML), Cascading Style Sheets (CSS), and JavaScript (JS), and then posted our web 
experiments on Prolific for subjects to complete. Experiments 1–4 and each recruited 50 subjects 
each; Experiments 5-10 recruited 100 subjects each. Sample sizes were chosen to be sufficiently 
large based on pilot studies we conducted. All subjects in each experiment were unique; no 
subject completed multiple experiments. Subjects received financial compensation upon 
completing the experiment. The experiments were approved by the Homewood Institutional 
Review Board of Johns Hopkins University (HIRB00005762). All subjects in these experiments 
provided consent for their participation. In all experiments, subjects who did not submit a 
complete dataset were excluded. 
 
Style transfer stimuli (Experiments 1–6; 10). We created a stimulus set of artificially-styled 
scenes using the style-transfer model from (27). We used the model to apply 6 styles from 
famous paintings (Demuth’s Trees and Barns Bermuda, Van Gogh’s Starry Night, Klimt’s The 
Kiss, Monet’s Water Lilies, Pollock’s Number 1, 1949, and Munch’s The Scream) to images of 4 
different scene types (beaches, bedrooms, libraries, and mountains). We chose these styles 
because they were prominent and even famous, while also still being sufficiently different from 
one another. Each scene type contained 64 images from the stimulus set in (29). This resulted in 
a style-transferred stimulus set of 1,536 images; all these images, along with the code needed to 
run the style-transfer model, are available in our data archive. 
 
Utensil stimuli (Experiments 7–9). Along with our style-transfer stimuli, we created a stimulus 
set of naturally styled objects, specifically sets of cutlery. We gathered images of 30 sets of 
cutlery from various online sources. The sets of cutlery come from a range of styles (e.g., some 
depict kids cutlery, some depict plastic cutlery, some depict medieval cutlery, etc.). 
 
Experiment 1: Style tuning 
 
Stimuli and Procedure. Participants completed 200 trials of our style tuning task. At the start of 
the experiment, each participant was randomly assigned a target scene type (either beaches, 
bedrooms, libraries, or mountains); this determined the scene type they had to count in each trial. 
Each trial contained an array of 9 images laid out horizontally, with the specific scenes randomly 
chosen (such that the target scene type was between 1 and 9; distractor scene types were also 
chosen randomly). Subjects had to count how many times the target scene appeared in the array, 
and then respond using their keyboard. 
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Half of trials contained scenes of all the same randomly-chosen style (i.e., for each of 100 
same-style trials, a random style was chosen from our set of 6 styles, and then all 9 images 
appeared in that style). The other half of trials contained scenes of multiple different styles, 
chosen randomly for each image. The order of same-style and mixed-style trials was shuffled 
randomly for each participant. Subjects received feedback at the end of each trial. 
 
This study was pre-registered on 31 August 2023 (https://aspredicted.org/kv3v-z8nv.pdf).  
 
Exclusions. We excluded participants who responded correctly on less than 30% of trials. This 
excluded 6 subjects total. Then, we excluded trials with response times below 200ms or above 
10000ms; this excluded 741 of the remaining 8800 trials. 
 
Results. As reported in the main text, subjects were significantly faster at enumerating scenes in 
same-style trials than in mixed-style trials (mean difference = 289ms, t(43) = 4.93, p < 0.001, d = 
0.74, 95% CI = [171ms, 407ms]; this and all other t-tests reported here are two-tailed 
dependent-samples tests over subject-level means). This analysis was performed only over trials 
in which participants responded correctly. Subjects were also significantly more accurate on 
same-style trials than on mixed-style trials (mean difference = 6.74%; t(43) = 6.10, p < 0.001, d 
= 0.92, 95% CI = [4.51%, 8.97%]; pre-registered as a secondary analysis). 
 
Experiment 2: Style tuning for varying array length 
 
Stimuli and Procedure. The task in Experiment 2 was the same as in Experiment 1 except as 
noted below. Instead of all trials presenting 9 images, here trials presented different numbers of 
images. The 200 trials were equally split among arrays of 3 images, 5 images, 7 images, and 9 
images. This balance was preserved across same- or mixed-style trials; in other words, of the 100 
same-style trials, 25 contained 3 images, 25 contained 5 images, 25 contained 7 images, and 25 
contained 9 images. 
 
This study was pre-registered on 10 September 2023 (https://aspredicted.org/fpkz-qpmk.pdf).  
 
Exclusions. We excluded participants who responded correctly on less than 40% of trials. Note 
that this accuracy criterion is higher than in Experiment 1; this is because the task is easier, as 
chance performance is higher on trials with fewer images. This excluded 2 subjects. 2 additional 
subjects were excluded because they did not complete the experiment. As before, we excluded 
trials with response times below 200ms or above 10000ms, which resulted in excluding 241 of 
9200 trials. 
 
Results. Collapsing across all image-array sizes, we observed significantly faster response-times 
on same-style trials than mixed-style trials (mean difference = 123ms, t(45) = 3.53, p < 0.001, d 
= 0.52, 95% CI = [53ms, 193ms]). Accuracy was also higher on same-style trials than on 
mixed-style trials (mean difference = 4.33%, t(45) = 4.50, p < 0.001, d = 0.66, 95% CI = [2.39%, 
6.27%]). Finally, we observed either significantly or marginally significantly faster response 
times for 3-image trials (mean difference = 98ms, t(45) = 2.53, p = 0.02, d = 0.37, 95% CI = 
[20ms, 176ms]), 5-image trials (mean difference = 108ms, t(45) = 1.93, p = 0.06, d = 0.28, 95% 
CI = [-5ms, 221ms]), 7-image trials (mean difference = 197ms, t(45) = 3.15, p < 0.01, d = 0.46, 
95% CI = [71ms, 323ms]), and 9-image trials (mean difference = 89ms, t(45) = 1.36, p = 0.18, d 
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= 0.20, 95% CI = [-42ms, 220ms]). Note that the experiment was not powered to test these 
specific sub-sample differences, and thus these latter analyses are purely exploratory. 
 
Experiment 3: Style tuning with color and luminance controls 
 
Stimuli and Procedure. This experiment proceeded the same way as Experiment 1; the only 
difference was in the stimuli. Whereas Experiment 1 presented stimuli which varied in color and 
luminance (simply using the output of the style-transfer method), Experiment 3 presented 
grayscale, luminance-matched versions of those stimuli (created using the SHINE toolbox in 
MATLAB, 31). 
 
This study was pre-registered on 13 September 2023 (https://aspredicted.org/5v4x-rhw2.pdf).  
 
Exclusions. Exclusion criteria here were the same as in Experiment 1: Subjects were excluded if 
their accuracy was below 30% (which excluded 6 subjects), and trials were excluded for 
response times below 200ms or above 10000ms (which excluded 721 or 8800 trials). 
 
Results. As in Experiment 1, subjects were significantly faster (mean difference = 267ms, t(43) = 
5.61, p < 0.001, d = 0.85, 95% CI = [171ms, 364ms]) and more accurate (mean difference = 
8.26%, t(43) = 7.37, p < 0.001, d = 1.11, 95% CI = [6.00%, 10.53%]) on same-style trials than 
mixed-style trials. 
 
Experiment 4: The timecourse of style tuning 
 
Stimuli and Procedure. The stimuli here were the same as in Experiment 1, and, as before, 
participants were assigned a target scene type at the start of their experiment. However, instead 
of counting the number of times the target scene appears in an array of 9 images, subjects used 
their mouse to click on each of the target scene images. When a subject was satisfied and thought 
they had clicked all the images of the target scene type, they could advance to the next trial by 
pressing “enter” on their keyboard. At the end of each trial, subjects received feedback, alerting 
them of both incorrect clicks (i.e., false alarms) and incorrect non-clicks (i.e., misses). 
 
This study was pre-registered on 14 September 2023 (https://aspredicted.org/95g8-cmgv.pdf).  
 
Exclusions. Subjects with accuracy below 40% were excluded (resulting in 4 exclusions). 4 
additional subjects were excluded for not completing the experiment. Note that we defined a 
“correct” trial as one where the subject clicks on all the correct scenes, and only those scenes 
(and thus has no false alarms or misses). This accuracy criterion was higher than in Experiments 
1 and 3 because the responses were slower and more intentional (i.e., participants could unclick 
and double-check their responses). Trials with a response time below 200ms or above 10000ms 
were excluded (resulting in 1201 of 8400 trials being excluded). 
 
Results. Total response time — i.e., from the presentation of the images until the subject pressed 
“enter” — was faster for same-style trials than for mixed-style trials (mean difference = 192ms, 
t(41) = 5.89, p < 0.001, d = 0.91, 95% CI = [126ms, 258ms]). Subjects were also more accurate 
on same-style trials (mean difference = 6.94%, t(41) = 6.93, p < 0.001, d = 1.07, 95% CI = 
[4.92%, 8.96%]). Crucially, however, we also analyzed our data by click index to investigate 
how style tuning evolves over time. We fit a linear mixed-effects model predicting response 
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times, with a random effect of subject and fixed effects of click index (i.e., how many images 
were previously clicked), trial type (same-style or mixed-style), and their interaction. We found a 
significant interaction between click index and trial type (t(711) = 3.25, p < 0.01). As expected, 
the fixed effect of click index was significant, as it takes more time to click more images (t(711) 
= 69.64, p < 0.001), and the fixed effect of trial type was not significant, suggesting that such a 
tuning advantage indeed evolves over time (i.e., it is not present immediately at the onset of a 
trial; t(711) = 0.63, p = 0.53). (Given that these two parameters on their own do not bear on the 
question of this experiment, we did not pre-register their analysis and merely include them for 
thoroughness here.) More importantly, we found a significant correlation between click index 
and same-style advantage on the subject-level (r(376) = 0.27, p < 0.001, 95% CI = [0.17, 0.36]), 
such that the same-style advantage increased as click index increased. 
 
Experiment 5: Style discounting 
 
Stimuli and Procedure. We used the luminance-matched stimuli from Experiment 3 in a 
same-different task to examine style discounting. On each trial, a base image appeared for 
850ms, followed by a blank screen for 750ms, followed by a new image, which stayed visible 
until response. The two images appeared in random locations, and also with random rotations for 
each trial; the rotations were introduced to make the task more difficult so that subjects would 
make errors (which are the targets of our analyses). Subjects had to say whether the two images 
were the same or different (irrespective of rotation; i.e., an image and its 90-degree-rotated 
version are the same image for this purpose). They made this response using their keyboard (“S” 
for same, “D” for different). 
 
Participants completed 100 trials of this task. In 50 of the trials, the two images were the same, 
and in 50 of the trials the two images were different. Of the 50 trials depicting two different 
images, 25 depicted the same scene as the base image, but in a different style (style-change 
trials); and 25 depicted a different scene from the base image, but in the same style 
(scene-change trials). The order of trials was randomly shuffled for each participant. 
 
This study was pre-registered on 15 November 2023 (https://aspredicted.org/c6b9-4jh8.pdf).  
 
Exclusions. We excluded subjects who did not perform accurately on at least 75% of trials, 
resulting in 11 exclusions. 2 additional subjects were excluded for failing to complete the 
experiment. 
 
Results. Subjects were more accurate on scene-change trials than style-change trials (mean 
difference = 16.83%, t(86) = 11.30, p < 0.001, d = 1.21, 95% CI = [13.87%, 19.79%]). They 
were also numerically faster on scene-change trials, though this trend was not significant (mean 
difference = 17ms, t(86) = 1.45, p = 0.15, d = 0.16, 95% CI = [-6ms, 41ms]). Additionally, we 
report an unbiased measure of sensitivity, d'. This revealed high sensitivity for scene-change 
trials over style-change trials (mean subject d' = 1.88, 95% CI = [1.75, 2.01]), confirming our 
accuracy-based metrics. Note that this d' analysis was not pre-registered, and thus is purely 
exploratory; however, it suggests that our results still hold with unbiased measures. 
 
Experiment 6: Style discounting with balanced metrics 
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Stimuli and Procedure. Participants performed the same task from Experiment 5. However, we 
sub-sampled our stimulus set to contain only the 25 most-similar pairs of scene-change images, 
and the 25-least similar pairs of style-change images. This resulted in a stimulus set where MSE 
of the pixel values, structural similarity, and ResNet embedding distance all rated scene-change 
pairs as more-similar than style-change pairs. The image metrics calculated for all relevant pairs 
of images are available in our OSF repository. 
 
This study was pre-registered on 20 November 2023 (https://aspredicted.org/43pc-xt3d.pdf).  
 
Exclusions. As in Experiment 5, we excluded subjects who responded correctly on less than 75% 
of trials, resulting in 10 exclusions. 1 additional subject was excluded for failing to complete the 
experiment. 
 
Results. As before, subjects were more accurate on scene-change trials (mean difference = 
12.90%, t(88) = 9.44, p < 0.001, d = 1.00, 95% CI = [10.18%, 15.61%]). Subjects were also 
faster on scene-change trials (mean difference = 55ms, t(88) = 3.53, p < 0.001, d = 0.37, 95% CI 
= [24ms, 87ms]). As above, these results were confirmed by an exploratory analysis using d', an 
unbiased measure (mean subject d' for scene-change vs. style-change trials = 2.42, 95% CI = 
[2.28, 2.56]). 
 
Experiment 7: Style extrapolation 
 
Stimuli and Procedure. The experiments for style extrapolation use the utensil stimuli described 
above. 
 
This experiment consisted of two parts: an identification task and a recall task. In the 
identification task, participants saw images of utensils, one at a time, and simply classified them 
as forks, knives, or spoons by pressing “F”, “K”, or “S” on their keyboards. After completing the 
identification task, participants were then given the recall task, which consisted of multiple trials 
each displaying a 3x2 grid of utensil images. (Participants were explicitly told that a recall task 
would follow the identification task.) Each trial of the recall task had the same utensil-types — 
i.e., all forks, all knives, or all spoons, randomly decided for each subject. (We refer to this 
utensil-type below as the ‘recall’ utensil.) Subjects were simply instructed to click on the images 
they had remembered seeing in the identification task and leave unclicked any images they 
hadn’t seen.   
 
The images appearing in each of these tasks were chosen very intentionally, and as follows (with 
these choices and parameters not revealed to participants). Of the 30 styles in our stimulus set, 10 
were chosen to be left out of the identification task (we refer to these as the ‘unseen’ styles). Of 
the remaining 20 styles, 10 contained two instances of the recall utensil in the identification task 
(‘seen’ styles), and 10 contained two examples of the two non-recall utensils in the identification 
task (‘extrapolated’ styles). For example, if the recall utensil for a given participant was a knife, 
then that participant would, in their identification task, see: 0 images of any kind from styles 
1-10; 20 knives from styles 11-20 (10 knives, each appearing twice); and one fork and one spoon 
each from styles 21-30. 
 
Then, in that participant’s recall task, they would see 30 images of knives, one from each style. 
Of those 30 images of knives, 10 would have actually appeared in the identification task (‘seen’); 
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10 would have came from styles that appeared in the identification task as forks and knives, even 
though the knives from that style did not appear themselves but the recall utensil itself did not 
appear in that style (‘extrapolated’); and 10 would have been genuinely novel, neither having 
appeared in the identification task themselves, nor any members of their style having appeared in 
the identification task (‘unseen’). 
 
The order of the identification trials, the position of the utensils in the recall grid, and the order 
of the recall trials were all randomized. 
 
This study was pre-registered on 13 November 2023 (https://aspredicted.org/fpsn-yrdj.pdf).  
 
Exclusions. We excluded participants who responded correctly on less than 90% of trials in the 
identification task, or got less than 66% of trials in the recall task correct. 5 subjects were 
excluded because of their performance in the identification task, and 19 more were excluded for 
their performance in the recall task. 1 additional subject was excluded for failure to complete the 
experiment. 
 
Results. Subjects had a significantly higher false-positive rate for extrapolated images than for 
unseen images (mean difference = 29.87%, t(74) = 11.43, p < 0.001, d = 1.32, 95% CI = 
[24.66%, 35.07%]). This positive response rate was in turn significantly lower than the positive 
responses for the seen images (which in this case, are correct responses; mean difference = 
36.00%, t(74) = 15.48, p < 0.001, d = 1.79, 95% CI = [31.37%, 40.63%]). 
 
Experiment 8: Style extrapolation, equating image similarity 
 
Stimuli and Procedure. As in Experiment 7, this task contained two parts. However, the styles 
were split differently than in that experiment. Here, of the 30 styles, 15 contributed two of the 
same examples in the identification task (e.g., two forks), and 15 contributed two unique 
examples (e.g., a fork and a knife). Furthermore, rather than being tested on just one recall 
utensil, participants in this task were tested on recalling all three utensils. The 15 styles of each 
kind were then equally split by recall utensil; 5 held out the fork, 5 held out the knife, and 5 held 
out the spoon. As before, the styles in each condition were randomly chosen for each participant. 
 
Because of these changes in style, the identification task now contained 60 trials (as each of 30 
styles contributed two images). Then, the recall task consisted of 10 trials, each displaying 6 
images in the grid. Half the images appeared in the identification task, and half were new. As 
before, the number of new images was randomized in each trial between 1 and 5 in a way that 
summed to 30 across the 10 trials. 
 
As stated in the main text, our prediction was that participants would be more likely to 
misremember having seen a given utensil (e.g., the medieval knife) if they had previously seen 
both other utensils from that style (e.g., the medieval fork and the medieval spoon) than if they 
had previously seen only one other utensil from that set twice (e.g., the medieval fork twice). 
This procedure thus equates for image similarity and frequency of exposure to images from a 
given style, ensuring that false memories of the additional utensil truly reflect style extrapolation.  
 
This study was pre-registered on 18 October 2023 (https://aspredicted.org/p89s-gtkf.pdf).  
 

20 
 

https://aspredicted.org/fpsn-yrdj.pdf
https://aspredicted.org/p89s-gtkf.pdf


 

Exclusions. We excluded participants who scored below 90% on the identification task, or below 
50% on the recall task. This recall exclusion criterion was more lenient than in Experiment 8 
because this task is harder than the previous one (i.e., the lures are more similar to the previously 
seen utensils). 1 subject was excluded based on their performance in the identification task, and 7 
more were excluded based on their performance in the recall task. 2 additional subjects did not 
complete the experiment, and were thus excluded. 
 
Results. Subjects had higher rates of false memories for styles containing two unique examples 
than for styles containing two examples of the same utensil (mean difference = 5.04%, t(89) = 
2.71, p < 0.01, d = 0.29, 95% CI = [1.34%, 8.73%]). 
 
Experiment 9: Implicit style extrapolation 
 
Stimuli and Procedure. This task was exactly the same as Experiment 8. The only difference was 
that, whereas in Experiment 8 subjects were told at the start of the experiment (i.e., before the 
identification task) that they would later be tested on their memory of the utensils, here subjects 
were not alerted of the upcoming recall task, such that it came as a surprise. 
 
This study was pre-registered on 17 October 2023 (https://aspredicted.org/6ngy-g3xs.pdf).  
 
Exclusions. Exclusions were the same as in Experiment 8. 3 participants were excluded because 
of poor performance in the identification task, and 3 more were excluded because of poor 
performance in the recall task. 2 additional subjects were excluded because they did not 
complete the experiment. 
 
Results. As in Experiment 8, subjects had more false-positives for styles containing two unique 
examples than for styles containing two examples of the same utensil (mean difference = 3.70%, 
t(91) = 2.43, p = 0.02, d = 0.25, 95% CI = [0.68%, 6.71%]). 
 
Experiment 10: Predicting stylistic judgments 
 
Stimuli and Procedure. On each trial of this experiment, participants saw two images (from our 
grayscale, luminance-matched style-transfer stimuli) and rated how similar they were on a 
9-point scale using their keyboard. Participants completed 100 such trials; in each trial, the two 
images were chosen randomly such that they depict the same scene type (e.g., both depict 
beaches) but in different styles. 
 
This study was pre-registered on 24 January 2024 (https://aspredicted.org/m439-g7d5.pdf).  
 
Exclusions. We excluded participants who responded with the same number in over 50 trials; this 
excluded 5 subjects. Then, we excluded trials with a response time below 200ms (which 
excluded 129 of 9500 remaining trials). 
 
Embeddings. We computed embeddings for each image in the stimulus set as follows: First, we 
extracted ResNet embeddings for each image (i.e., the final layer of ResNet classification). 
These embeddings are 512-dimensional; we reduced them to 2 dimensions by first transforming 
the 512 dimensions into 50 dimensions with PCA, and then transforming those 50 dimensions 
into 2 with t-SNE (t-distributed Stochastic Neighbor Embedding, 41). (The PCA transformation 
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was done because t-SNE is typically thought to be unstable above 50 dimensions). We then 
computed Euclidean distance between images in this 2D embedding space. We also calculated 
the mean squared error (MSE) in pixel values between any two images in the dataset for model 
comparison. 
 
Note that all correlations regarding the human-response data are Spearman rank-order correlation 
tests (and not Pearson’s correlation tests) because we are concerned with monotonicity and not 
linearly. Further, we make no assumptions about the distribution of the variables, and thus prefer 
the non-parametric test. We found that the mean t-SNE distance had a significant monotonic 
relationship with judged similarity (  = -1.0). Meanwhile, the rank-order correlation with MSE ρ
was weaker (  = -0.85). We also computed the mean response and distances for each pair of ρ
styles (of which there are 15); this relationship was  = -0.46 for t-SNE distances, and  = -0.37 ρ ρ
for MSE. 
 
Data Availability: All data and materials are available in our OSF repository here: 
https://osf.io/mb3nh/. 
 
Code Availability: All code is available in our OSF repository here: https://osf.io/mb3nh/. 
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