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Recent influential accounts of temporal representation—
the use of mental representations with explicit temporal

contents, such as before and after relations and

durations—sharply distinguish representation from mere

sensitivity. A common, important picture of inter-

temporal rationality is that it consists in maximizing total

expected discounted utility across time. By analyzing rein-

forcement learning algorithms, this article shows that,

given such notions of temporal representation and inter-

temporal rationality, it would be possible for an agent to

achieve inter-temporal rationality without temporal repre-

sentation. It then explores potential upshots of this result

for theorizing about rationality and representation.
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1 | INTRODUCTION

Inter-temporal rationality requires taking actions now which will not be immediately rewarding,
but will result in larger benefits later. For example, it might involve forgoing food now to store a
tool that can be used to obtain better quality food later, a feat Kabadayi and Osvath (2017) show in
ravens. More generally, it involves consistently balancing one's welfare across different moments
of one's lifetime. It might appear obvious that this requires a rich framework for understanding
time, featuring concepts like IMMEDIATELY, LATER, and MOMENTS. I will show that it
requires no such thing. In fact, a creature could be inter-temporally rational without having any
representations with explicit temporal contents—such as attributing before and after relations or
durations, or locating events at times—at all. Or, as I shall put it for convenience, inter-temporal
rationality can be achieved without temporal representation.
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This has implications for several debates. One is the nature of temporal representation—
and representation generally. I remain neutral on exactly how to define representation. But my
argument follows prominent recent discussions, such as Hoerl and McCormack (2019a) and
Peacocke (2017), in assuming that temporal representation is demanding enough to contrast
with mere temporal sensitivity. Such views face the challenge of articulating what does require
representation. This challenge is sharpened if they imply that even inter-temporal rationality is
possible without temporal representation. And if a demanding notion of representation cannot
overcome this challenge in the case of time, this may cause problems for such views generally,
including for Burge's (2010) influential approach.

Inter-temporal rationality— as I understand it here — without temporal representation also
raises questions about the nature of rationality. I will be assuming that inter-temporal rational-
ity is fundamentally about maximizing total utility over time. Some may wish to use this arti-
cle's argument as part of a reductio of the picture of rationality it presupposes. To do so, one
would need to specify exactly what is missing in the kind of decision-making I describe, and
show that it does require temporal representation. Such a project would be highly informative.

This article also bears on issues surrounding the minds of different species: It shows that an
animal could produce rational behavior in an interesting sense—including ravens' impressive
delay gratification abilities demonstrated by Kabadayi and Osvath (2017)—without temporal
representation, given the learning mechanisms many animals have. This has implications for the
scope and significance of the traditional views that nonhuman animals lack rationality, and
that they are “stuck in time,” both of which have been thought to have profound implications
for ethics and for our understanding of the mind and evolution.1

The basic argument of this article is that reinforcement learning (RL) algorithms can achieve
inter-temporal rationality without relying on temporal representation. RL algorithms are an
extremely important tool both in AI and as models of animal (including human) decision-making:
It is likely that a great deal of behavior is due to brains implementing such algorithms. I will focus
on two RL algorithms. The main argument (Sections 2 and 3) will show that reliably coming to act
in a way that maximizes expected discounted utility over time is possible without representing time,
using temporal difference (TD) learning. Section 4 will show that an even more sophisticated kind of
inter-temporal rationality, reliably immediately acting in a way that maximizes expected discounted
utility over time, is achievable sans temporal representation using model-based RL. Section 5 dis-
cusses objections and replies, and Section 6 explores some of the upshots of the result.

2 | THE MAIN ARGUMENT

My argument has the following overall structure (Section 3 will explain what the premises
mean and defend them):

(P1) An agent is inter-temporally rational if they reliably act in ways which will, over time,
maximize total discounted expected utility.
(P2) An agent that implements the RL algorithm TD will thereby reliably act in a way that will,
over time, maximize total discounted expected utility.

1See Adamson and Edwards (2018) for the history of the rationality claim, and Roberts (2002) and Hoerl (2008) for the
history of the “stuck in time” claim.
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(P3) Implementing TD requires temporal representation only if representing one of the variables
explicitly represented in TD—specifically the value function V(.), the policy π(.), or the current and
next state S and S0 (Section 3.2 explains what these are in detail)—requires temporal representation.
(P4) Having representational states with fixed temporally relevant functional roles does not
require temporal representation.
(P5) Representing S, S0, and π(.) only requires having states with fixed temporally relevant func-
tional roles.
(P6) Representing a variable that would be ultimately analyzed in partly temporal terms does
not require temporal representation, provided the system simply treats the variable as
unanalyzed.
(P7) V(.) is a variable that would be ultimately analyzed in partly temporal terms, but TD can
simply treat V(.) as unanalyzed.

Therefore, (C) An agent can be inter-temporally rational without temporal representation.
(P4) and (P5) imply that representing S, S0, and π(.) does not require temporal representa-

tion; (P6) and (P7) imply that representing V(.) does not require temporal representation either.
So representation of S, S0, π(.), and V(.) does not require temporal representation. But then, by
P(3), TD can work without representation of time, which in turn implies by P(2) that an agent
can act in a way that reliably maximizes total discounted utility without representation of time.
Given P(1), this is enough for inter-temporal rationality without temporal representation.

I will now justify, and, where necessary, explain the different premises in turn.

3 | PREMISES

3.1 | An agent is inter-temporally rational if they reliably act in ways
which will, over time, maximize total discounted expected utility

An important view of inter-temporal rationality, especially in formal models (including rational
choice models in economics), is that an agent is inter-temporally rational insofar as they choose
actions which maximize total discounted expected utility. One way of expressing this formally,
if we call utility at the moment t “reward,” symbolized Rt, and assume that future utility is
discounted by a factor γ � [0,1] for every period in the future t = 1, t = 2, up to t = n, is to say
that rationality requires agents choose actions a1, …,an to maximize:

E
Xt¼n

t¼1γ
t-1Rtja1, :::,an

h i
ð1Þ

Philosophers have developed alternatives to this view (Section 6.2), but it remains dominant.
And with good reason. It elegantly captures the idea that rationality sometimes requires
delaying gratification, but puts this idea in its proper place. It specifies a precise way of trading
off present and future rewards, specifying how large a future reward (or extended stream of
rewards) must be to justify foregoing some more immediate reward. And the idea that much of
the time we are implicitly maximizing (Equation 1) can explain a great deal of behavior.

One way of calculating (Equation 1) would involve representing entire sequences of actions
and predicted rewards, including explicitly representing when they all are predicted to occur, in
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order to discount rewards accordingly. By contrast, RL provides ways of ensuring actions reli-
ably maximize (Equation 1), without such explicit temporal representation.

3.2 | An agent that implements the RL algorithm TD will thereby
reliably act in a way that will, over time, maximize total discounted
expected utility

RL is widely agreed to be an important part (although not the entirety—Hayden & Niv, 2021) of
decision-making. Treating animals as performing RL algorithms can explain many aspects of both
behavior and neural activity, and has correctly predicted previously unnoticed features of both, as
summarized by Ludvig et al. (2011), Petter et al. (2018), and Sutton and Barto (2018, chapters
14 and 15). For example, it helped predict: how subtle differences in stimuli timing can reverse
well-known classical conditioning effects like blocking (Kehoe et al., 1987); that dopamine activity
corresponds to unexpected reward rather than reward simpliciter (Montague et al., 1996), and that
this activity can be optogenetically manipulated to cause an animal to learn as if it were receiving
unexpected reward and following an RL algorithm (Steinberg et al., 2013).

The general idea of RL algorithms is for a system to learn a policy—a function specifying
which action to take for each possible state of the environment—which maximizes
(Equation 1). To learn such a policy, the subject repeatedly takes different actions, moving into
different states, and each time it does so, incrementally updates an estimate of the value of that
state on the basis of the observed outcome on that occasion. The way this updating works
ensures that, given enough iterations, these value representations track the expected contribu-
tion to total discounted rewards that one would get from moving into this state. This in turn
allows the subject to improve their policy so that it better maximizes (Equation 1). It will be use-
ful to see in detail how this works in a particular algorithm.

TD learning algorithms are one empirically and theoretically important variety of
RL. Consider pseudo-code for one TD algorithm, Algorithm 1: see next page (“x  y” means
that the previous value of x gets replaced with y at that stage in processing):

The important parts for our purposes are these: TD arrives at an estimate for V(S) (the value
assigned to state S, on the assumption that after moving to S, the subject will take the actions
dictated by π(.)) by repeatedly taking actions from S, and updating its estimate for V(S) on the
basis of the results—and likewise for every state. The value assigned to a state comes to track
the extent to which taking that action or moving into that state will lead to immediate rewards,
in addition to the extent to which it will put the subject in a position to take further rewarding
actions in the future. So, when moving into a state leads to immediate rewards, TD will learn
that this action is valuable; but an action might also be valuable due to its longer-run effects,
despite low initial returns.

Although the true value which V(.) is designed to track is the discounted sum of rewards
from a sequence of actions, TD does not rely on representing sequences. Instead, the key to its
tracking discounted future rewards lies in the specific way it performs incremental updates,
given by line 9. The rationale for line 9 rests on two facts. First, the true value of S just is the
expected immediate reward from S, plus the expected discounted value of the future stream of
rewards from the next period onwards. Second, S0 is the state in the next period, so the expected
discounted value of the future stream of rewards from the next period just is what V(S0) is
designed to track. line 9 therefore uses V(S0) (discounted because it will be reached 1 period
after S) as a key part of an error signal—the expression inside the square brackets—which

4 BROWN



allows it to incrementally adjust V(S) in the right direction. When R + γ V(S0) >V(S), that is,
when the experienced reward and estimated value of the next state outstrip the current estimate
of V(S), the estimated value of S is increased proportionally (and decreased when the opposite
holds). As more states are visited on more occasions, TD will converge on the correct values for
V(.)—specifically, the value of moving into S and then following policy π(.).

Upon improving this estimate, the policy itself can be improved, to one which always
chooses to move into the state with the highest value of V(.) available. As V(.) was estimated on
the basis of the old policy, it will now need to be relearned for the new policy. This process can
be iterated, with policies and associated value estimates gradually improving until they con-
verge on the optimum.2 This convergence to an optimal policy is well known and studied in
computer science—there are many proofs of such convergence for different RL algorithms, and
a great deal of work is devoted to studying different algorithms' speed of convergence under dif-
ferent conditions.3

To illustrate, we can consider how TD would produce the future-directed behavior demon-
strated in ravens by Kabadayi and Osvath (2017). Ravens learn that a tool can be used to obtain
food from an apparatus. They subsequently choose the tool when it can be used in the future to
open the apparatus, even when the apparatus is in another room. Furthermore, they learn that
a specific human gives them food in exchange for tokens, and subsequently choose that token
for future use, even before the human arrives. Ravens do this for delays between choice and
payoff of 15 minutes (Experiment 1) or 17 hours (Experiment 2), even choosing the tool/token
over immediate but lower-value rewards (Experiment 3).

TD can produce such behavior (see Lind, 2018, for detailed simulations of Kabadayi & Osvath's
results with a related algorithm). The key reason for this is that ravens were given training with
tools and tokens before they were tested on choosing them prospectively. TD might start out

ALGORITHM 1 Tabular TD for estimating V(.) given π
1. Input: the policy π to be evaluated

2. Algorithm parameter: step size α � (0,1]
3. Initialize V(s), for all s � S+, arbitrarily except that V(terminal) = 0
4. Loop for each episode:

5. Initialize S
6. Loop for each episode:

7. A action given by π for S
8. Take action A, observe R, S0

9. V(S) V(S) + α [ R + γ V(S0) – V(S) ]
10. S S0

11. until S is terminal. (Sutton & Barto, 2018, p. 120).

2This is a simplification: For example, it may be required, especially in early stages of this iterative process, not to
simply switch fully to the apparently value-maximizing policy, and instead to explore states that would not be visited
under that policy. Complications of this sort do not require temporal representation, so I leave them aside.
3Sutton and Barto (2018) discuss convergence results throughout. For this algorithm specifically, see Sutton and
Barto (2018, pp. 126-129, 139).
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assigning value to different states arbitrarily. But during training, it would gradually increase the
value of states progressively earlier in the chain leading up to the reward, and decrease the value
of other states. First, it would increase the value of states immediately preceding reward—where
the animal is using the tool on the apparatus or giving the token to the human—as visits to these
states would result in a high value of R in line 9. It would then start increasing the value of states
preceding those states—states where the subject was in possession of the tool/token and near to
the apparatus/human—as visits to these states would be succeeded by a highly valued state, hence
a high value of V(S0) in line 9. Ultimately, value would spread through the entire chain of states
leading up to the reward—that is, to all states where the raven has a tool/token. States which
never led to high rewards or highly valued states (i.e., states where the animal does not have a tool
or token), meanwhile, would gradually decrease in value. On every visit to such a state S, its previ-
ously assigned value, V(S), would be larger than R + γV(S0), the sum of S0's experienced reward on
that visit and the discounted value assigned to the state following S, until V(S) decreased enough
to reflect S's true (relatively low) value. Once the algorithm assigned higher values to states where
the subject has the tool/token than to other states, it would reliably choose to move into those
states—it would reliably choose the token/tool, even over small levels of immediate reward (R),
and even when not in the immediate presence of the apparatus/human.

3.3 | Implementing TD requires representation of time only if
representing V(.), π(.), S, or S0 requires temporal representation

This premise can be split into two claims: (1) if some behavior or capacity is to motivate posit-
ing a representation of X, then the explanation of that behavior or capacity should involve com-
putations which operate on or output representations with X as part of their contents; (2) if TD
involves operating on or outputting representations with temporal content, then that temporal
content must show up in its representations of V(.), π(.), S, or S0.

The first of these claims may sound trivial. However, many neuroscientists, and some phi-
losophers, use “representation” in a deflationary way which does not respect this principle—
often when giving an informal gloss on the workings of a system, but also in some theories of
representation (see Burge, 2010, for detailed critical discussion of many such theories). For
example, we could say “TD learning represents the whole stream of rewards spread over time
rather than just immediate rewards” merely as a way of capturing the fact that a subject using
TD will be sensitive to the whole stream of rewards spread over time — that is, that their behav-
ior will vary appropriately with variations in total rewards.

This article concerns weightier uses of “representation,” following recent prominent discus-
sions of temporal representation. Peacocke (2017, p. 214) explicitly endorses the claim, which
he draws from Burge's (2010) discussion of representation in other domains, that “[f]or an
organism to be sensitive to a magnitude of a given type … is not yet for the organism to repre-
sent that magnitude as such,”4 and goes on to argue that “attribution of temporal representa-
tional content is correspondingly well-founded only if there are actions not fully explained by
temporal features of proximal states … but are explained by states of the creature whose content

4While Burge (2010) offers the most extended and influential recent discussion of the representation/sensitivity distinction in
general, Burge (2010, pp. 518-529) claims that temporal sensitivities being “harnessed” for representation of other properties
is sufficient for genuine representation (for which he is criticized by Peacocke, 2017 and by Gross, 2017).
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involves duration and the past” (Peacocke, 2017, p. 218). Hoerl and McCormack (2019a, p. 4)
adopt a similar notion, citing Peacocke.5

My argument does not rely on a specific account of the temporal representation/sensitivity
distinction (like Peacocke's (2017) account in terms of “Representational Preservation”), or of
representation in general (like Neander's (2017) or Shea's (2018) sophisticated teleosemantic
accounts). The argument goes through on any account that endorses the claim that if some
behavior or capacity is to motivate positing a representation of X, then the explanation of that
behavior or capacity should involve computations which operate on or output representations
with X as part of their contents, plus (P4) and (P6).

As for the claim that V(.), π(.), S, and S0 are the only explicit representations in the above algo-
rithm which are strong candidates for temporal representation, there are only two other potential
candidates: the other represented variables (R, A, α, and γ); and mathematical functions of the vari-
ables, such as the entirety of the right-hand side of line 9. Any plausible arguments for any of these
having temporal contents are stronger as arguments for V(.), π(.), S, and S0. To take them in turn:

R and A represent a reward and an action, respectively. There do not seem to be any reasons to
think that these must be represented temporally, except reasons which also apply to the instantia-
tion of states. α and γ, meanwhile, are just fixed parameters. α determines how much the RL algo-
rithm updates its estimate of V(S) in response to a single sample, and γ determines how much it
discounts future events. One might think that α and γ have temporal content, in the sense that
they change how the system behaves over time. But they do not track or vary with anything tem-
poral: They do not vary at all. Neither does the algorithm calculate them or use them in different
ways on the basis of their temporal aspect, instead using them in a fixed, automatic fashion. At
best, they have the same status as V(.): When we as theorists explain what they are, we have to
advert to temporal features of the system's behavior, but the system itself does not do so.

As for mathematical functions of the represented atomic variables, we need not rule out all
complicated mathematical functions of such variables counting as embedding temporal infor-
mation: There does not seem to be any reason to include the specific functions involved in this
algorithm as containing any more temporal content than their atomic components.

3.4 | Having representational states with fixed temporally relevant
functional roles does not require temporal representation

(P4) and (P6) draw on commitments Hoerl and McCormack (2019a, 2019b) and Peacocke (2017)
incur while arguing that various cases of temporally appropriate behavior do not imply tempo-
ral representation. They often proceed by showing that the behavior can be explained in terms
of states with fixed functional roles that are partly delineated in terms of specific dynamics. I
will explain what this means through examples.

Take coordinating perception, memory, and anticipation. We might think that this requires
each of these processes to use contents with tense or markers like past, present, or future. Other-
wise, we might think, subjects would frequently confuse representations pertaining to different
times, respond now to long-past threats, and treat future plans as having already been carried
out. Hoerl and McCormack argue otherwise. They argue that a “Temporal Updating System”

5McCormack & Hoerl (2017) point out that the view that infants are sensitive to duration without genuinely
representing it dates back at least to Piaget.
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could integrate information received in the past with information currently being perceived and
with goal states, to produce appropriate actions, despite lacking temporal contents.

A temporal updating system keeps a model of the world, which retains information from
past experience. It operates by “changing representations, rather than representing change”
(Hoerl & McCormack, 2019a, p. 2). That is, when it gets new information contradicting its cur-
rent model, it never concludes the world has changed: It simply changes its model and discards
its previous information. If the model has it that there is a tree in a certain location because the
subject visited that location in the past, but new information shows there is no tree there, the
system does not conclude there used to be a tree but it must have fallen down; instead it just stops
representing the tree as at that location. Its representations can be interpreted as tenseless
(Hoerl & McCormack, 2019b, p. 52).6

The underlying move here is to build the temporal competence into the functional roles of
the states involved, obviating the need for the states' contents to mark out the times they relate
to. Hoerl and McCormack offer explanations of the same form for numerous more sophisticated
cases. I will not discuss all of these, but it will be useful to get a flavor of how they deal with
more complexity by considering sensitivity to duration.

Sensitivity to duration is extremely widespread. Many classic conditioning experiments
involved rats and pigeons learning to respond to stimuli of particular durations, or to produce
stimuli for certain durations (Gallistel, 1990, pp. 294, 301-306). And such sensitivity is often eco-
logically relevant. Peacocke (2017, p. 216) focuses on the Hawai'i 'amakihi returning to nectar
sources after the optimal duration, which varies based on factors like how quickly the source
refills and how likely others are to get there first, a behavior documented in detail in
Gill's (1988) classic study of hummingbirds. Hoerl and McCormack focus on Clayton and
Dickinson's (1998) finding that scrub jays return to sites where they have cached food only
when that particular cache has not been left long enough to rot (given its contents: seeds,
crickets, and worms decay at different rates), a behavior also documented in magpies
(Zinkivskay et al., 2009), and chickadees (Feeney et al., 2009).

One way to return to the nectar source at the right time is to represent temporal content: to
use a representation of the duration along with rate of refilling to estimate the current nectar
level. But Peacocke (2017, p. 216) argues that there is an alternative: use a state representing
nectar levels, which is governed by a mechanism that automatically changes its represented
level at the right rate without any computation, much as a mechanism could automatically
increase the level of water in a bucket at a constant rate without any computation. Similarly, to
avoid searching at the sites of long-decayed caches, one need not rely on representing duration:
McCormack (2001), Hoerl (2008), and Hoerl and McCormack (2019a, 2019b) argue that this is
possible with a state that represents only the cache's contents and location, and, as part of its
functional role qua worm-cache-representation, is governed by a timer so that it gets forgotten
after the appropriate amount of time.7

This is not yet enough to explain learning to respond to durations. But Hoerl and
McCormack (2019b, p. 52) argue that instead of having completely fixed dynamics, the timers
governing such representations can be entrained—modified automatically to synchronize with

6Ismael (2017, p. 26-27) describes a similar system for different theoretical purposes.
7There may be more reason to attribute temporal representation to scrub jays than Hoerl and McCormack allow, as
there is additional complexity in the behavior that they do not discuss (Clayton et al., 2003; Correia et al., 2007), and
reason to suspect yet further complexity that has not been scientifically documented. However, the main point here is
just illustration of what could be achieved without appeal to temporal representation in principle.
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the environment—without representing duration. Suppose that when visits to the flower find it
already completely full, the rate increases, and when the flower is not full, the rate decreases.
Such a system will converge on the dynamics appropriate to that flower. Yet it would still be
the case that the timing mechanisms “simply govern the updating and maintenance of elements
of the creature's model of its present environment” (Hoerl & McCormack, 2019a, p. 14) rather
than generating temporal representations that are parts of that model itself.

3.5 | Representing S, S0, and π(.) only requires having states with
fixed temporally relevant functional roles

If this treatment is good enough for duration sensitivity, it is good enough for S, S0, and π(.). To
see why, it will be useful to understand why one might think these involve temporal representa-
tion in the first place.

When explaining how the algorithm works, it is useful to gloss S and S0 as “the previous
state” and “the current state.” Likewise, π(.) is a function specifying which action to take next,
given the current state. As such, we might think that the algorithm represents possible states as
previous, current, and next.

However, we should distinguish between a description of a state that expresses its content, and
a mere theorist's gloss. This distinction shows up in the cases in Section 3.4: We could say that the
‘amakihi's representation is of the nectar being available “now and not a moment ago”. But for
Peacocke, it does not include this temporal content explicitly, and such talk is merely a way of
talking about the dynamics of the nectar-representation that are part of its functional role. The
description of S, S0, and π(.) as representing the previous/next/current states only needs to be a gloss
of this kind. Their functional roles can be fixed with respect to temporal properties, with S and S0

always representing whatever the current state and the previous states happen to be, and π(.) always
representing a function from states to actions, which is always consulted in the same way, for the
same purposes. We can imagine the whole system being governed by a regular oscillator (like how
Hoerl and McCormack and Peacocke think birds’ representations might be governed by a timer),
such that every cycle, the represented state of the environment in the S0 slot is copied into the
S slot, overwriting the previous entry there, before perception automatically determines which state
of the environment should be put in the S0 slot, after which the algorithm is looped through again.

Of course, one could implement TD using representations with temporal content rather rely-
ing on fixed functional roles; but one need not do anything like this to achieve inter-temporal
rationality: fixed functional roles are good enough.

3.6 | Representing a variable that would be ultimately analyzed in
partly temporal terms does not require temporal representation,
provided the system simply treats the variable as unanalyzed

A theorist's gloss might misconstrue a state's content not just through picking up on dynamic
aspects of the state's functional role, but through representing what I will call a “covertly tem-
poral entity”: an entity which should ultimately be analyzed by philosophers and scientists
partly in temporal terms, but which is not represented as such by the subject. As in Section 3.4,
we can see this through examples.
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A covertly temporal property for human perception might be pitch. Ultimately, pitch is fre-
quency of sound waves per second. It is not a pure temporal property: It matters that it concerns
sound waves. But its temporal component is essential too. Perceptual experience, however, does
not separate these components out. The fact that pitch has this temporal component is a sur-
prise to most physics students.

As it is for pitch, so it could be for all rates. It is crucial to Hoerl and McCormack's project of
arguing that temporal representation is unique to adult humans that they have an account of
both sensitivity to and representation of rates which does not invoke temporal representation.
Sensitivity to rates is extremely important and widespread in the animal kingdom
(Gallistel, 1990, chapter 11). Indeed, Gallistel and King (2010, pp. 226-240) argue that all classi-
cal conditioning involves rate representation, and Petter et al. (2018) make related claims about
RL, which we will discuss in Section 5. Van Duijn et al. (2006), Lyon (2015), and Bechtel and
Bich (2021), and others who argue that even bacteria engage in cognition, emphasize microbes'
complex forms of sensitivity to rates, like Escherichia coli's sensitivity to the rate of change of
chemical concentrations controlling their movement. So Hoerl and McCormack need to either
say that many of these cases of rate sensitivity do not involve rate representation, or that rate
representation does not involve temporal representation, even though rates involve time. For
our purposes, instances of their making the latter move are more important.

They make it when replying to Pan and Carruthers's (2019) claim that optimal foraging the-
ory implies that animals represent time, because it implies their representing rates of reward.8

Hoerl and McCormack say this:

[T]hink of the dial on a car's speedometer. This acts as a representation of a rate, a
rate related to the locations the car occupies at different times, but it does not act
as a representation of a succession of events happening at different times. Argu-
ably, people also use it in ways that don't need to involve any reasoning about other
times, such as when they simply look at the speedometer, notice that they are
breaking the speed limit, and take their foot off the gas. In a similar way, we want
to suggest that animals may be sensitive to the rate of reward at different locations,
but in a way that does not involve any reasoning about different moments in time.
(Hoerl & McCormack, 2019b, p. 60)

I think there are two moves here. One is the emphasis on representation of times as opposed
to temporal properties; this move is not available to my argument, as my target includes all pure
temporal properties. The other is the point that a speedometer is an example showing one can
represent a rate without representing it as temporal—without breaking it down into some vari-
able that changes over time (such as miles) and a unit of time (such as hours).

One might agree that, in principle, one could have a representation of a rate without tempo-
ral representation, yet question how a system could reliably produce such representations accu-
rately without representing time as such. Surely sensitivity to rates of change requires either
differentiation of a function of time, or dividing the difference between a start and end value of
a variable over a temporal interval by that interval's duration? The answer is no. Fixed dynamic
functional roles for states with nontemporal contents can do the job. Suppose that the variable

8They are not the only ones to make this point, for example, “[a]ll sorts of memories of actions, sensations, or distances
could become embodied representations, which are intrinsically related to time, without having a ‘pure’ representation
of the dimension itself” (Osvath & Kabadayi, 2019, p. 41)
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whose rate of change we want to measure is temperature. Have a component that generates
readings of temperature, governed by an oscillator so that it does so every second.9 Each reading
generates a representation m. Suppose also that each period, just before it is replaced by a new
reading, m is copied and a new state is formed with the most recent reading. Then n(m � n)/
(period of the oscillator) gives the average rate of change during the period. Because the oscilla-
tor has a fixed period, m � n itself will track the average rate of change.

We can bolster the point that rates do not require temporal representation with two further
cases. Firstly, it is plausible that ordinary objects should ultimately be analyzed partly in terms
of their persistence conditions: What it is to be a teapot is partly to maintain a certain form over
time in such a way as to hold tea under normal conditions. And representing a teapot as a tea-
pot arguably requires some kind of implicit sensitivity to this fact. But such sensitivity could be
very implicit indeed; and as such, it would be misleading to say that a representation of some-
thing as a teapot is a temporal representation. Secondly, we can consider a nontemporal case:
We might think that the number seven is ultimately to be defined as 1 + 1 + 1 + 1 + 1 + 1
+ 1; but this need not be appreciated (except, perhaps, very implicitly) by the subject that repre-
sents there being seven biscuits in the tin. It would be misleading to say that such a representa-
tion is of (or even partly of ) the successor relation or +.

3.7 | V(.) is a variable that would be ultimately analyzed in partly
temporal terms, but TD can simply treat V(.) as unanalyzed

If this treatment is good enough for rate sensitivity, it is good enough for V(.). V(.) is a variable
that would be ultimately analyzed in partly temporal terms. If we as theorists were to analyze
what V(.) represents, we might say something like: “the value of different states—the expected
discounted rewards over time that would be achieved from entering each possible state.” How-
ever, just like for our experience of pitch or the speedometer's representation of speed, this is
just our gloss, relying on distinctions the subject does not (and potentially cannot) make, and V
(.) itself is not explicitly temporal. We might think of the content of V(S) as something more like
an unarticulated [EXPECTED-VALUE-OVER-TIME-GIVEN-π-OF S] than [EXPECTED
VALUE OVER TIME GIVEN π OF S]. A subject can run an RL algorithm without being
capable of appreciating the analysis of V(.) or in any way decomposing it into its temporal com-
ponents beyond the “analysis” implicit in performing the computations involved in TD
learning—which I have already argued do not involve temporal representation. Just as it would
be misleading to say that the speedometer represents time, that ordinary object representations
have temporal contents or that an ordinary representation of seven represents the successor
relation, it is misleading to say that V(.) has temporal content. As for the question of how it can
be calculated without temporal representation, the TD algorithm provides an answer.

It might be thought that V(.) is not simply atomic for such a system—there is some analysis
of its components, in the sense that it is broken down into V(S) + α [R + γ V(S0) – V(S)] in line
9. However, any “temporal” component here is not a representation reusable in other contexts
as temporal—it is in the relationship between S0 and S that does not extend beyond this single
computation.

9Peacocke (2017, p. 217) argues in more detail (along basically the same lines as for sensitivity to duration) that
sensitivity to phases in regular cycles can be achieved without temporal representation.
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Indeed, Hoerl and McCormack (2019b, p. 53) do allude to the idea that value representa-
tions could implicitly encode temporal information when replying to concerns Osvath and
Kabadayi (2019) raise, suggesting that they agree that value representations are not temporal,
although they do not go into detail.

4 | IMMEDIATE RATIONALITY

This completes the basic argument that inter-temporal rationality can be achieved without tem-
poral representation. This is a surprising and interesting result in its own right, but it does have
various limitations, deriving from limitations of TD. Some of these relate to the fact that to learn
V(.) for every state, the system needs to attempt the task repeatedly. During these attempts, it
will decidedly not act inter-temporally rationally. It will take actions which would seem irratio-
nal to us, because it needs to actually explore states whose pitfalls we could foresee without vis-
iting them. Suppose the task being learned is playing chess: We might not need to ever try out
intentionally putting our queen in danger with no discernible benefit, to know that this would
be a bad move; but the TD algorithm would require try it out—and then do it again for good
measure. Algorithm 1 will only approach an optimal policy in the long run, at least for large
state-spaces.

However, this particular problem is not endemic to RL: there are various ways of
supplementing the algorithm which can help overcome it, without introducing temporal repre-
sentation. One strategy is building in generalization of various kinds, so that updates to the
value of one state automatically inform the algorithm's valuation of relevantly similar states.
Another, which I will focus on here, is to use a model to simulate the environment. Given a
simulation of what would happen if the subject visited a certain state, RL can determine the
optimal policy (given its model of the world) before it has taken any real actions at all. Not only
can it achieve this even more impressive kind of inter-temporal rationality than the TD algo-
rithm in Section 3, but model-based RL is an important topic in AI and computational neurosci-
ence, so it will be worth going through why it, too, does not require temporal representation.

A model is something which outputs representations of S0 and R given representations of
S and A. We can use the very same TD algorithm as in Section 3, only using simulated states,
actions and rewards (i.e., line 8 will change from “Take action A, observe R, S0” to “Simulate
taking action A, observe predicted R, S0”). If the model matches the actual world (if it has the
correct probabilities of outputting different values of S0 and R), then repeating this process
enough times will lead V(.) to converge on the correct values, for the very same reasons as
repeating actual interactions with the world.

Does this require temporal representation? Most of the process for learning V(.), given the
model, is the same as in Section 3, so there are only a few potential reasons why temporal repre-
sentation might have been introduced: using the model, representing the model, or learning the
model.

Using the model might be thought to involve temporal representation, because of the fol-
lowing contrast: above, I said that TD learning did not require temporal representation because
it always involves representing the present and immediately previous states, and these can be
taken care of by fixed functional roles. Models, by contrast, allow simulation of a whole tempo-
ral chain of states in order, stretching into the future. However, while some RL algorithms do
use models to generate entire chains, which they represent as such and operate on in virtue of
their temporal properties, this is not necessary: At any given stage of processing, the system
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need only represent only two states, a reward, and an action, and overall it just needs to explore
all the different states, without needing to explore them in any particular order.

Similar points apply to representing the model: all it requires is a fixed function, with slots
for S, S0, R, and A, much like π(.) has fixed slots for S and A. It need only represent two states
(and an action and reward) at once, and it can do so with slots that have distinctive functional
roles, rather than representing the relationship between the two states as temporal. These func-
tional roles will correspond to the fact that we want the model to output states and rewards
according to those that will temporally follow a given action and state, but this correspondence
need not be represented.

Finally, one might worry that an accurate model of the world can only be learned using tem-
poral representation. But, while writing out and discussing specific algorithms for learning
models would take us too far afield here, it should be intuitive already that learning about
which state-action pairs predict which state-reward pairs can be achieved through learning
based on machinery already shown to not imply temporal representation—representations of
pairs of states (or quadruples of two states, a reward and an action) in functionally defined slots,
automatic calculation of and response to error signals, and so forth.

5 | OBJECTIONS AND REPLIES

RL is sometimes presented as involving temporal representation. Petter et al. (2018, p. 911) state
flatly, “[t]he computational goal of RL is to maximize future rewards, and this depends crucially
on a representation of time”; and Hayman and Huebner (2019) appeal to animals' doing RL as
an example of their using temporal representation. Different ways of understanding such claims
have different upshots for the argument of this article.

First, there are claims that all RL algorithms, including TD, rely on temporal representation,
which appear to be based on glosses of the different components of RL, of precisely the kind I
already argued above do not reflect genuine temporal representation, at least on the demanding
notion of representation presupposed here. For example:

Model-free systems compute forward-looking predictions, track discrepancies
between experienced and predicted rewards, and adjust future predictions to
accommodate such discrepancies. Model-based strategies store a model of the
world that specifies when a sequence of actions is expected to yield reward and
compute decisions on this basis…each kind of system relies on forward-looking
expectations about which actions are likely to be rewarded, as well as retained rep-
resentations of what has worked in the past. (Hayman & Huebner, 2019, p. 26)

Second, RL sometimes operates over state representations which include explicitly temporal
information. States might be defined in terms of the duration of some stimulus, just as they can
be defined by the presence of a particular shape or length. This is one way of equipping RL to
learn solutions to timing-specific problems such as peak interval procedures, temporal bi-
section tasks, and tasks involving integrating temporal relationships between different pairs of
events. Much of Petter et al. (2018) is devoted to the use of RL in such tasks. However, this does
not pose a worry for the above argument: If such tasks require temporal representation, this is
not because RL in general requires temporal representation, or because inter-temporal
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rationality requires temporal representation. Rather, it would reflect independent facts about
these specific tasks.

A different worry in the vicinity is that empirically plausible models of inter-temporal
decision-making in animals involve temporal representation. The specific form of TD learning
discussed above is only one flavor of RL, and there are many others. Not all variations here pose
any extra need for temporal representation: For example, using value functions that apply to
state-action pairs rather than to states. But some have prima facie claims to involving temporal
representation, and might be realistic models of some brain activity: For example, algorithms
involving replaying entire sequences of actions. However, it is important to emphasize that the
claim of this article is not that animals never use temporal representation, but that temporal
representation is not required for inter-temporal rationality.

The most serious worry here is that focusing on actual brains might bring out ways in which
all RL algorithms, including TD, in fact rely on temporal representation in ways that were tac-
itly suppressed by the above presentation. Realistic cases might be thought to show that either
state representations or the update rule require temporal representation after all.

One argument for this would start by claiming that state representation relies on perception,
and then combine this view with the claims that we mainly perceive continuous, dynamic enti-
ties like processes, trajectories, motion and the change of different variables (Grush, 2007;
Ismael, 2017, pp. 25, 29), and/or that to perceive even static objects, we need to integrate contin-
uously changing views of those objects (Hayman & Huebner, 2019 raise this as an issue for
Hoerl & McCormack, (2019a, 2019b); for related discussion see Burge, 2010, p. 445). As it
stands, this worry is not specific to inter-temporal rationality, and it relies on a view about per-
ception which Hoerl and McCormack would deny. But it does bring up a more specific worry:
that the version of TD I discussed above requires discretely segmented states, occurring at dis-
cretely segmented time periods. What if it turns out that any genuine mind, as opposed to sim-
ple computer, has to work in continuous time rather than such segmented states?

One reply to this worry is that there is evidence that we do automatically segment our
stream of experience into events for certain purposes (Zacks & Tversky, 2001; Clewett
et al., 2019).10 But more importantly, there are versions of RL that use continuous rather than
discrete changes in states. The key question will be whether they imply temporal representation.
Thoroughly answering this would require detailed discussion of particular algorithms (which
are considerably more mathematically involved than the TD algorithm above). But the short
answer is that the main candidates for temporal representation in these algorithms are rate rep-
resentations, and Section 3.6 already argued that these do not imply temporal representation.

A closely related worry is that all RL algorithms have some limitation or other. Convergence
proofs rely on various assumptions. So it might be questioned whether they really achieve inter-
temporal rationality, as opposed to conditional rationality, rationality given that these assump-
tions hold. Such assumptions are important, and in Section 6.2, I will articulate some of them
and consider the prospects of taking them as the starting points for an account of behavior that
does require temporal representation. For now, even without getting into the details of such
conditions, we can see that the worry about whether RL counts as achieving rationality given
its reliance on such conditions is misplaced. We can see that they are often met, at least approx-
imately, from the fact that RL is used successfully in many real-world scenarios by brains and

10There is a further question about whether this event segmentation is possible without the perceptual system operating
over representations of time, but this is independent of the issue of whether inter-temporal choice requires temporal
representation, given that it has state representations.
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artificial applications of machine learning. Furthermore, relying on background conditions to
achieve rationality does not rule out actually achieving rationality when such conditions are
met: Even procedures which no one would question as counting as implementing inter-
temporal rationality rest on some conditions to successfully do so. For example, directly calcu-
lating (Equation 1) will only result in inter-temporal rationality in a creature capable of per-
forming such calculations accurately, who has formed the expected values they are calculating
with accurately, and who is calculating over a state and action space that carves up the world
appropriately.

6 | UPSHOTS OF THE ARGUMENT

6.1 | Inter-temporal rationality?

Maximizing total expected discounted utility, while a prominent account of inter-temporal
rationality, is not the only account on the market. If one thinks that the claim that inter-
temporal rationality without temporal representation is implausible, then one might treat the
argument here as a consideration in favor of an alternative account of rationality. Here I briefly
sketch how the discussion might go for three alternative conceptions of inter-temporal rational-
ity, in order to bring out my argument's potential consequences.

The most flatfooted response along these lines is that genuine rationality requires being
aware that you are maximizing total expected discounted utility over time, and doing so inten-
tionally. This view would effectively stipulate that inter-temporal rationality would require rep-
resentation of time (as well as of maximization, rationality, etc.). One issue with this view is
that it is extremely rare that ordinary humans think in anything like these terms explicitly, even
if they have a better grasp of time than a TD algorithm does.

One might instead think that inter-temporal rationality requires that subjects decide the
shape of utility's distribution across their lives. Hoerl and McCormack (2019a, 2019b, p. 15) sug-
gest that the ability to do this might be one of the main benefits of temporal representation
(albeit in the context of a discussion which arguably underestimates the sophistication of inter-
temporal choice achievable through RL). Slote (1982) argues that it is at least rationally permis-
sible to have preferences about the overall shape of utility, and Velleman (1991) links this to
preferences about the narrative structure of one's life, while Schechtman (1996, 2011),
Taylor (1989), and others have argued for connected claims about having a unified, autonomous
self across time at all involving appreciating such narratives. However, these claims have been
criticized (e.g., by Strawson, 2004); and it remains far from clear how necessary for rationality
such ways of thinking about inter-temporal choice really are.

A related view has it that inter-temporal rationality requires other kinds of consistency over time,
including certain kinds of stability in preferences and choices, and sticking to plans (Bratman, 2018).
Having and resolutely sticking to a plan may require representing a sequence of actions as occurring
in a temporal order, and representing my having made a plan in the past tense.

Irrespective of the outcome of these debates, all should agree that maximizing utility over
time, even without realizing it, is relevant to, if not exhaustive of, inter-temporal rationality. On
any plausible account of inter-temporal rationality, delaying gratification will be an important
part of the story, and that is one of the things that can be done without temporal
representation.
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6.2 | Temporal representation?

My argument treats representation as a demanding notion, in line with Peacocke (2017), Hoerl
and McCormack (2019a, 2019b), and the general attitude to representation in Burge (2010). This
does not require a specific positive account of representation, but does require more than some
prominent attempts at naturalizing representation, such as simple covariation theories and at
least some versions of teleosemantics. For example, Montemayor (2013) argues on the basis of a
broadly teleosemantic account, and Gallistel (1990) argues on a functioning isomorphism view,
that temporal representation is implied by many of the cases that Hoerl and McCormack think
merely show sensitivity (cf., Montemayor, 2019; Pan & Carruthers, 2019; Viera &
Margolis, 2019).

Advocates of a deflationary account might treat the result that inter-temporal rationality is
possible without temporal representation, given a demanding account of representation, as part
of a reductio of demanding accounts. But advocates of deflationary accounts will face their own
problem, of showing exactly why representation is implicated in TD, while maintaining “repre-
sentation” as a useful notion. After all, nearly all organisms behave appropriately with respect
to time. It is crucial to their functioning and often evolutionarily selected for that they undergo
regular cycles which synchronize with one another and with the environment (Gallistel, 1990,
pp. 221-222; Montemayor, 2013, p. 35). And as mentioned above, E. coli's movement is sensitive
to rates of change of chemical concentrations. Should all of this be counted as temporal repre-
sentation? If so, what do we gain by describing it as such? If not, what precisely is the difference
between bacteria going through a regular cycle and a brain doing so while running a TD algo-
rithm? Many who are tempted by somewhat deflationary accounts of representation will be
reluctant to go so far.

Even if deflationists cannot answer this challenge, demanding views of temporal representa-
tion still face a challenge which is sharpened by the finding here: Specifying what would be
enough for temporal representation. What distinctive capacities can temporal representation
underpin which we cannot explain through fixed functional roles and unanalyzed covertly tem-
poral representations? If such a view implies that even inter-temporal rationality is possible
without temporal representation, we might worry that it is likely to leave temporal representa-
tion implicated only in extremely specific sorts of temporal capacities, if any at all. And the
argument above is suggestive that many other kinds of competence with respect to time could
be achieved using fixed functional roles and representation of covertly temporal properties,
given the mileage that can be got out of these in the context of RL. What other algorithms could
incorporate such tricks, and to what ends?

Peacocke (2017) and Hoerl and McCormack (2019a, 2019b) do sketch positive accounts of
what temporal representation can buy us. But both warrant further discussion, given how far
we can push temporally competent behavior without (by their lights) temporal representation.
Hoerl and McCormack (2019a, 2019b) emphasize the ability to represent orders of objective
events which differ from the order of subjective experience of those events.11 But it is not clear
that this is a particularly significant achievement, given that one of the main uses they suggest
for it is for the contentious form of choice concerned with the shape of utility over time dis-
cussed in Section 6.1. Furthermore, it may turn out to be possible to represent orders of

11Elsewhere they emphasize prima facie different capacities, like causal reasoning that respects the principle that causes
precede effects (Hoerl, 2008), although Hoerl and McCormack (2011) closely link this to an account of representation of
objective order closer to the (Hoerl & McCormack, 2019a, 2019b) account.
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objective events which differ from the order of subjective experience via RL or other styles of
algorithm building on the sorts of tricks in Section 3. Peacocke, meanwhile, points to “Repre-
sentational Preservation”: Representing the world as being a certain way an explicitly specified
length of time ago, in addition to integrating all such representations into a representation of
the total state of the world both past and present. One worry for this account is that it is
unclear, without more detail, if there really are any behaviors which strictly require such a sys-
tem, and could not be achieved by a sufficiently complex algorithm making use of the kind of
tricks discussed in the context of RL.

In Section 5, I alluded to conditions under which RL does not reliably produce expected util-
ity maximization. Rather than treating such conditions as showing RL never achieves inter-
temporal rationality, a view I rejected in Section 5, such conditions could serve as the starting
point for a demanding account of temporal representation. Perhaps temporal representation
can be defined in terms of achieving inter-temporal rationality even when these conditions are
violated.

Many such conditions relate to RL's relying on a well-chosen state space. The set of states
which the system represents needs to instantiate an effective way of carving up the world, or
RL can produce suboptimal results. There is a cluster of ways that state-spaces can be poorly
chosen for RL. The most obviously time-related is violating the Markov assumption. This
requires that the current state on its own is the best predictor for what state will come next—
that including the history of states leading up to this current state would not add predictive
power. When this assumption is violated, any update rule which, like line 9 in Section 3.2's TD
algorithm, only takes into account a single time period, systematically fails to incorporate avail-
able information about states' values.

The suggestion, then, would be to define temporal representation in terms of being able to
achieve inter-temporal rationality in the absence of the Markov property. Fully developing this
approach would require exploring algorithms which achieve this, and carefully considering
whether such algorithms require temporal representation. However, not only is such a project
well beyond the scope of this article, but it might reasonably be suspected of resting its account
of temporal representation on excessively technical details, which do not themselves directly
connect to general accounts of representation or of time. This suspicion might motivate a very
different approach, that reconsiders the aim of finding specific patterns of behavior that can
only be explained in terms of temporal representation. Such an approach might look at more
than just behavior, or rethink the notion of explanation at issue and its relationship to
representation.

This article is not claiming that either austere or deflationary views of temporal representa-
tion are decisively ruled out; rather, I hope to have deepened our understanding of what is at
stake between the two camps, by showing that an important part of inter-temporal rationality
can be achieved without (demanding) temporal representation, and by showing some of the tri-
cks that allow for this—tricks that can be generalized to other cases.

7 | CONCLUSION

I have shown that, if we assume an austere (though not unmotivated) account of temporal rep-
resentation, and a utility-maximizing account of inter-temporal rationality, then inter-temporal
rationality is achievable without temporal representation. RL algorithms can produce inter-
temporally rational actions while relying only on representations which an austere account
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would not consider temporal. This seems to imply that at least one of the following three claims
must be true: the austere account of temporal representation is too demanding; the utility-
maximizing account of inter-temporal rationality is not demanding enough; or the relationship
between inter-temporal rationality and temporal representation is very different to what many
have assumed.
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